
1

  Tom “Strace” Stracener – Sr. Security
Analyst

  Cenzic
  http://www.cenzic.com
  http://www.badgadgets.net

  Robert “RSnake” Hansen - CEO
  SecTheory LLC

  http://www.sectheory.com
  http://ha.ckers.org – the lab
  http://sla.ckers.org – the forum

2

3

  iHumble
  I want to explain the history…
  Only a few know the whole story.
  Sit back and relax, it’s story time.

4

  We’ve all heard these sentiments: “If you
find a vulnerability, we ask that you share it
with us. If you share it with us, we will
respond to you with a time we will fix that
hole.” Scott Petry – Director @ Google
  (We’ll be coming back to this!)

5

  It all started four years ago…
  We found that redirection vulnerabilities

were being used by phishers in a number of
sites, Visa, Doubleclick, eBay and of course,
Google to confuse consumers.

  Timeframes for fixes:
  Visa closed their hole down within hours
  Double Click within days (partially)
  eBay within weeks
  Google still hasn’t closed them (~4 years later)

  Every company agrees it’s a hole. Everyone

  Word gets out – fast!
  http://lists.virus.org/dshield-0602/msg00156.html
  http://blog.eweek.com/blogs/larry_seltzer/archive/2006/03/05/8240.aspx
  http://thespamdiaries.blogspot.com/2006/03/google-used-as-url-cloaking-device-

in.html
  http://www.docuverse.com/blog/donpark/EntryViewPage.aspx?

guid=e08af74b-8b86-418c-94e0-7d29a7cb91e2
  http://email.about.com/od/outlooktips/qt/et043005.htm
  http://listserv.educause.edu/cgi-bin/wa.exe?

A2=ind0511&L=security&T=0&F=&S=&P=15599
  http://blogs.geekdojo.net/brian/archive/2004/10/14/googlephishing.aspx
  http://www.zataz.com/news/13296/google-corrige-une-faille.html
  http://google.blognewschannel.com/archives/2007/02/22/google-changes-redirects-

adds-nofollow-to-blogger/
  http://googlesystem.blogspot.com/2007/02/google-redirect-notice.html

  And others…
6

7

  Everyone has vulns. But in this
case…

  We informed Google that their own
users were being exploited, to
which we were told that they were
putting a blacklist in place.

  Yes, you heard me, a blacklist…
  Blacklists only block what you

know, not what you don’t know –
they refused to fix the problem
properly. Add one character, you
evade their blacklist. Best
engineers in the world, eh?

8

  Why not fix it?
  Money: Expensive to fix
  Money: Useful for tracking

users
  Money: Would break “feeling

lucky” and other tools that drive
‘stickiness’

  Why fix it?
  Altruism: It’s the right thing to

do (Google != Evil)
  Altruism: It’s hole being

actively used (not theory)
  Altruism: Stop contributing to

the problem
  So what did I do? I waited

two years…

9

  I don’t hate Google, I just crush a lot.
  Disclosed 4 redirects 11th, Jan 2006 (with

no reaction)
  Disclosed XSS on 4th, Jul 2006 (reaction!)

  “Just to close this subject out, I think the open
url redirection … has been closed.... To the
extent that open url redirection was being
used by phishers, closing the most-used url
should make a difference.“ – Matt Cutts

  “Given that tons of different internal groups
at Google used this redirector for quite a
while, it’s understandable that it took a little
while to close this.” – Matt Cutts

  Anti-Phishing Primer:
  Whitelist first

 Known good sites
  False positives
 Webmail

  Blacklist second
 Known bad URLs (not domains)

  Heuristics last
  DNS sometimes

  Google is litigious.
  We marked Google as a phishing site, but guess why?
  It WAS a phishing site! Duh!

  Consumers put misguided trust in Google. 

  Well, it just so happens that JavaScript can
redirect too.

  But this time, I’m nice! Remember Mr. Petry, if
you disclose it to us responsibly, “we will fix that
hole”.

  “On further review, it turns out
that this is not a bug, but
instead the expected behavior of
this domain.”

  “Since these modules reside on
the gmodules.com domain
instead of the Google domain,
cross-domain protection stops
them from being used to steal
Google-specific cookies, etc.”

  Uh… Bueller?

Wow.

  Google already agreed
redirection was bad.

  Google is still an evil litigious
company (maybe more so now
than ever).

  Google doesn’t have the first
clue what XSS is or what it can
be used for.

  Google lied about the
definition of a vulnerability
that they already agreed to fix.

  Bad guys are STILL using it!

  Others: “This issue you describe is
not actually a vulnerability (and is
not cross site scripting)…. In this
case, you are simply including
allowed script in your blog. This
does not constitute a security
breach.” - Blogspot

  “I think it is irresponsible for
RSnake to hint that…” -’bob’
72.14.224.1 (Google Corp IT)

  Meanwhile more holes are opening!
  Stop fighting us, Google. We’re the

good guys!

  The Google Desktop Vuln (May 31st, 2007)
‘Regarding security-flaw disclosure, Mr. Merrill
says Google hasn’t provided much because
consumers, its primary users to date, often aren’t
tech-savvy enough to understand security bulletins
and find them “distracting and confusing.” Also,
because fixes Google makes on its servers are
invisible to the user, notification hasn’t seemed
necessary, he says.’ – Wall Street Journal

  Phishing problem (Nov 1st 2007) “in the two
months since RSnake first made his concerns
public, no one from Google has publicly disputed
anything he has said” – News.com

  We are simply exacerbating the points already
known:
  Google is, was and will be vulnerable
  Google hasn’t been open about it with consumers
  Google hasn’t fixed their holes in a timely manner
  Google lies to security researchers

  “If you share it with us, we will respond to you with a time we
will fix that hole.” (April 10th, 2008)

  This has NEVER happened, holes may get fixed but I have
never been given a timeline for any of the redirects.

  Google cares more about tracking users than safety.
  This isn’t the whole history… there’s lots more…

PDP, Architect, GNUCITIZEN, quoting Giorgio Maone

Execute arbitrary code
“Use JavaScript and HTML to craft custom payloads”

Content Spoofing
“Make users believe that content is legitimate when in fact it is

controlled by an attacker with malicious intent.”

Phishing
“Steal user passwords by faking login portals to web based

services, devices, or web sites.”

Arbitrary JavaScript executes whenever the user follows a
link to the gadget or if the gadget is embedded within a
web page.

“On further review, it turns out that this is not a bug, but instead the
expected behavior of this domain. Javascript is a supported part of
Google modules, as seen, for example, here: http://www.google.com/apis/maps/
documentation/mapplets/#Hello_World_of_Mapplets. Since these modules reside on the
gmodules.com domain instead of the Google domain, cross-domain
protection stops them from being used to steal Google-specific cookies,
etc. If you do find a way of executing this code from the context of a
google.com domain, though, please let us know.”
 - Google Security

We are going to spend a few minutes and take their
reasoning apart piece by piece and then show you why
they are wrong.

Premise (Google): Gmodules is a different domain from Google or
Gmail.

Premise (Google): You can only attack Gmodules with this
vulnerability

Conclusion (Google): The vulnerability is insignificant

Response: This begs the questions that there is nothing worth
exploiting on Gmodules, and that phishing attacks should not be a
concern.

Premise (Google): Gmodules does not look like a Google domain

Premise (Google): Users who would follow a link to Gmodules (a
Google domain) would be just as likely to follow a link to
BadGmodules (not a Google domain).

Conclusion (Google): Fixing the vulnerability would not reduce risk
to the user

Response: Does Gmail look like a Google domain?

Premise (Google): Gmodules needs JavaScript to serve and cache
Gadgets

Premise (Google): There is no harm in using JavaScript to host our Gadgets

Conclusion (Google): The XSS is expected behavior and should not be
fixed.

Response: The issue is
 1) Not JavaScript, but JavaScript security.
 2) Placing additional security measures could make the hosted

code more Secure.
 3) The current architecture creates an environment of significant risk.

Attackers can exploit the Gmodules XSS to
attack Google Gadgets and potentially
the users desktop

Attackers can use Gmodules as a place to
host their malware

 This makes it virtually impossible to tell bad or dangerous

Gmodules code from good or safe code.

Attackers can use Gmodules as a host for
Phishing sites

Part of a new world view of how the web should operate…

Gadgets are often
talked about in
ideological terms

Google Seed
Money!

1.  Simple to build
“” create gadgets that include tabs, Flash
content, persistent storage, dynamic resizing,
and more”

2. Access and Run on
Multiple Sites

“Your gadget can run on multiple sites and
products including iGoogle, Google Maps,
Orkut, or any webpage.”

3. Reach Millions of Users
“Gadgets are viewed millions of times
per week and generate significant traffic”

“OpenSocial is built upon gadgets, so you can build a great
viral social app with little to no serving costs.”

1) Viral Spread via ‘Social Graph’
 Gadget-as-a-Meme
2) Decentralized Architecture Distributed

Processing
 Gadget-as-an-Agent
3) Content Rich, Self-Expression
 Gadget-as-Expression

http://code.google.com/apis/opensocial/articles/bestprac.html

4) Dynamic, Organic Change
 Gadget-as-an-Organism
5) Expose the Activity Stream
 Gadget-as-’Social Information’
 Gadget-as-a-’Record of Activity’
6) Browse the Social Graph
 Gadget-as-Graph

-  Monitoring without centralization

http://code.google.com/apis/opensocial/articles/bestprac.html

7) Drive Interactions and Communication
 Gadget-as-Communication
8) Build Relationships and Communities
 Gadget-as-a-Community
9) Solve Real World Tasks
 Gadget-as-Tool

-  Problem Solving
-  Revenue Generating

http://code.google.com/apis/opensocial/articles/bestprac.html

1) Gadgets for iGoogle

2) Gadgets for the web

3) OpenSocial API

4) Desktop Gadgets

http://code.google.com/apis/gadgets/

Gadgets can be easily “weaponized” into
attack tools or payloads

Gadgets are largely 3rd party code and
potentially malicious

Gadgets can attack other gadgets, the desktop,
or web sites

Gadgets can have (most of) the same
vulnerabilities as web applications

What if my Gadget is broken or displays

offensive or inappropriate content?

1.  JavaScript/HTML/Script Injection
-Gadget-to-Gadget Vectors
-Gadget-to-Desktop Vectors

2.  Defacement
-Content/Data Manipulation Attacks

3.  Poisoning
-Data Pollution
-Social Graph Attacks
-’click fraud’ correllaries

4. Content/Gateway Spoofing
-Masquerading, Redirection
-Gateways to other apps
-Phishing

5. Surveillance/Spyware
-Spyware/Adware
-User tracking/monitoring
-Unauthorized Data collection & Export

6. Exposures
-Exposing “low-interaction” user data
-Personal information theft + leaks

7. Malware “Gmalware”
-targeted attacks, DDOS

-Cookie Theft, Zombies

-Exploits, Wrappers

-Browser attacks + Hijacking

8. Worms
-Social Networks

9. Abusive/Coercive Functionality
-Tracking gadgets, privacy concerns, unfriendly gadgets

Decisions decisions…

if ((too_be($evil))|| (!too_be($evil))) {
 $that = $the->question();
}

Take a close look at the Gadget’s Options. Someone at Google has a sense
of humor…

http://desktop.google.com/en/dev/advancedapi.html
http://code.google.com/more/#products-gadgets-gdgadgets

Crackdown Gadget..

Crackdown Gadget..

M.U.S.H.U!

1.  Monitors feeds/web sites for
subversive content

2.  Uploads search terms (via CSS
history hack, etc…) and IP address
to state server

3.  Spiders Web Sites from which
content originates and determines
how “Red” a domain is

4.  Hinders freedom movements and
suppresses Anti-Communist rhetoric

5.  Updates state database with data
from the “Social Grid”

1) Or SQL injection CSRF

2) Or RFI injection CSRF

3) Or Exponential (Xdomain)
XSS worms

4) Etc.. Etc..

Demo time…

1. Port of PDPs Yahoo Spider Gadget
 On this page you will find a small POC (Proof of Concept) of a client-

side (only JavaScript) spider that is based on the top of Yahoo Site Explorer
PageData service

2. Gadget
 We created a gadget for PDPs spider example

3. Client-Side JavaScript Spider
 The Page Data service allows you to retrieve information about the

subpages in a domain or beneath a path that exist within the Yahoo! index.

Gadget Spider
 http://www.seoish.com/spider-simulator-google-gadget/

• Demonstrates ability to call an external PHP script to include
functionality within a Gadget

• One of a number of useful web hacking Gadgets we’ve ported

• Gadget Code & Spider Code is available for download

 Configuration Results
We fetch a PHP script within the Gadget

http://exgenesis.com/wonderbread/pspider.xml

 Configuration Results

1) Demonstrates port scanning via a javascript embedded
within a gadget

2) We ported PDPs nice JS Scanner into a Gadget
3) Port scanner Gadget code is available for download

Gadget Port Scanner

pScan Configuration Results

Demo time…

1. Gadgets can attack one another, steal cookies and/or data, manipulate
the content of other gadgets.

http://89.gmodules.com/ig/ifr?url=http://www3.sympatico.ca/mjdresser/
Delicious.xml&nocache=0&up_username=wipeouter&up_tag=&up_count=15&upt_co
unt=enum&up_images=0&upt_images=bool&lang=de&country=de&.lang=de&.countr
y=de&synd=ig&mid=89&ifpctok=6968901372936289341&parent=http://
www.google.de&extern_js=/extern_js/f/CgJlbhICdXMrMAo4ACw/8IKVf7DB5CY.js

http://98.gmodules.com/ig/ifr?url=http://customrss.googlepages.com/
customrss.xml&nocache=0&up_rssurl=http://ha.ckers.org/blog/feed/
&up_title=ha.ckers.org&up_titleurl=http://
ha.ckers.org&up_num_entries=10&up_linkaction=openlink&upt_linkaction=enum&up
_background=E1E9C3&up_border=CFC58E&up_round=1&upt_round=bool&up_font
family=Arial&up_fontsize=8pt&up_openfontsize=9pt&up_itempadding=3px&up_bull
et=icon&upt_bullet=enum&up_custicon=Overrides
+favicon.ico&up_boxicon=1&upt_boxicon=bool&up_opacity=20&upt_opacity=enum
&up_itemlinkcolor=596F3E&up_itemlinkweight=Normal&upt_itemlinkweight=enum
&up_itemlinkdecoration=None&upt_itemlinkdecoration=enum&up_vlinkcolor=C7CF
A8&up_vlinkweight=Normal&upt_vlinkweight=enum&up_vlinkdecoration=None&up
t_vlinkdecoration=enum&up_showdate=1&upt_showdate=bool&up_datecolor=9F9F9
F&up_tcolor=1C57A9&up_thighlight=FFF19D&up_desclinkcolor=1B5790&up_color
=000000&up_dback=FFFFFF&up_dborder=DFCE6F&up_desclinkweight=Bold&upt_
desclinkweight=enum&up_desclinkdecoration=None&upt_desclinkdecoration=enum&
lang=nl&country=us&.lang=nl&.country=us&synd=ig&mid=98&ifpctok=-594448212
3251000084&parent=http://www.google.com&extern_js=/extern_js/f/
CgJlbhICdXMrMBI4ACwrMBM4ACw/v3vgcgA0x8g.js

  How can you get a malicious Google Gadget on
someone’s iGoogle?
  They can add something that they think is good but turns

into something bad.
  We can hack any one of the hundreds of domains that

already host Google gadgets (remember how easy it is to
hack into websites)?

  Since Google’s base domain is vulnerable to XSS fairly
frequently, we could use XMLHTTPRequest if we know of
one. But if we have that, we don’t need any of this other
stuff, so that’s not a practical argument although it would
add persistence to your attack if necessary (turning
reflected XSS into persistent).

  Annnnd, we can force people to add it subversively…
  Demo time.

  Is anyone from Google in the audience?
  Is this Expected Behavior™?
  Get to the point already:

  It’s “bad”.

  We know you have choices in the speeches you
listen to. Thank you for flying Google Gadgets
airlines.

  Tom “Strace” Stracener
  http://www.cenzic.com
  http://www.badgadgets.net
  strace_aT_gmail_d0t_org

  Robert “RSnake” Hansen
  http://www.sectheory.com
  http://ha.ckers.org – the lab
  http://sla.ckers.org – the forum
  h_aT_ckers_d0t_org

