
How to Impress Girls with Browser
Memory Protection Bypasses

Mark Dowd & Alexander Sotirov

markdowd@au1.ibm.com

alex@sotirov.net

BlackHat USA 2008

Setting back browser security by 10 years

Introduction

Part I:

© Copyright IBM Corporation 2007

Introduction

 Thesis

– Vista protections are largely ineffective at preventing

browser exploitation

 Overview

– Whirlwind tour of Vista protection mechanisms

 GS, SafeSEH, DEP, ASLR

– Techniques for exploiting protection limitations

 All protections broken

– Conclusion

 Full paper available at http://taossa.com

© Copyright IBM Corporation 2007

Additional Research Objectives

 Despite conventional wisdom, girls really are

impressed by this research

– Field testing conducted by Mark and Alex

– Photographic evidence!

© Copyright IBM Corporation 2007

Girls are not impressed by us yet!

© Copyright IBM Corporation 2007

Demo

 Exploiting IE despite all protections on Vista

– ASLR and DEP turned on

– Third party plugins NOT required for exploitation

 This works with IE8 as well

Vista Protection Features

Part II:

© Copyright IBM Corporation 2007

Memory Protection Mechanisms

© Copyright IBM Corporation 2007

Memory Protection Mechanisms

 Detect memory corruption:

– GS stack cookies

– SEH chain validation

– Heap corruption detection

 Stop common exploitation patterns:

– GS (variable reordering)

– SafeSEH

– DEP

– ASLR

© Copyright IBM Corporation 2007

GS Stack Cookies

 GS prevents the attacker from using an

overwritten return address on the stack

– Adds a stack cookie between the local variables and return

address

– Checks the cookie at the function epilogue

© Copyright IBM Corporation 2007

GS Variable Reordering

 Prevents the attacker from overwriting other local

variables or arguments

– String buffers go above other variables

– Arguments copied below local variables

source code standard stack frame stack frame with /GS

void vuln(char* arg) buf copy of arg
{ i i

char buf[100]; return address buf
int i; arg stack cookie
strcpy(buf, arg); return address
... arg (unused)

}

© Copyright IBM Corporation 2007

SafeSEH

 Prevents the attacker from using an overwritten

SEH record. Allows only the following cases:

– Handler found in SafeSEH table of a DLL

– Handler in a DLL linked without /SafeSEH

 If DEP is disabled, we have one more case:

– Handler on a non-image page, but not on the stack

© Copyright IBM Corporation 2007

SEH Chain Validation

 New protection in Windows Server 2008, much

more effective than SafeSEH

– Puts a cookie at the end of the SEH chain

– The exception dispatcher walks the chain and verifies that it

ends with a cookie

– If an SEH record is overwritten, the SEH chain will break

and will not end with the cookie

 Present in Vista SP1, but not enabled

© Copyright IBM Corporation 2007

Data Execution Prevention (DEP)

 Prevents the attacker from jumping to data:

– Uses the NX bit in modern CPUs

– Modes of operation

 OptIn – protects only apps compiled with /NXCOMPAT. Default

mode on XP and Vista

 OptOut – protects all apps unless they opt out. Default mode on

Server 2003 and 2008

 AlwaysOn/AlwaysOff – as you’d expect

– DEP is always enabled for 64-bit processes

 Internet Explorer on Vista x64 is still a 32-bit process with no DEP

© Copyright IBM Corporation 2007

Data Execution Prevention (DEP)

 Can be enabled and disabled at runtime with

NtSetInformationProcess()

– Skape and Skywing’s attack against DEP

– Permanent DEP in Vista

 Important: DEP does not prevent the program

from allocating RWX memory

© Copyright IBM Corporation 2007

Address Space Layout Randomization (ASLR)

 Dramatically lowers exploit reliability

– Relies on nothing being statically placed

 Several major components

– Image Randomization

– Heap Randomization

– Stack Randomization

– PEB/TEB Randomization

© Copyright IBM Corporation 2007

Address Space Layout Randomization (ASLR)

 Binaries opted-in to ASLR will be randomized

– Configurable:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Con
trol\Session Manager\Memory Management\MoveImages

 Stragegy 1: DLL randomization
– Random offset from 0x78000000 up to 16M chosen (“Image Bias”)

– DLLs packed together near the top of memory (First DLL Ending with
Image Bias)

– Known DLLs order also mixed up at boot time

– Constant across different processes (mostly..)

 Strategy 2: EXE randomization
– Random image base chosen within 16M of preferred image base

– DLLs also use this strategy if “DLL Range” is used up

 Granularity of Address Space: 64K

© Copyright IBM Corporation 2007

Address Space Layout Randomization (ASLR)

© Copyright IBM Corporation 2007

Address Space Layout Randomization (ASLR)

 Heap randomization strategy: Move the heap base
– Address where heap begins is selected linearly with

NtAllocateVirtualMemory()

– Random offset up to 2M into selected region is used for real
heap base

– 64K alignment

 Stack randomization strategy: Selecting a random
“hole” in the address space

– Random 5-bit value chosen (X)

– Address space searched X times for space to allocate the
stack

 Stack base also randomized
– Stack begins at random offset from selected base (up to

half a page)

– DWORD aligned

© Copyright IBM Corporation 2007

Girls are getting slightly more interested…

Breaking Vista Protections

Part III:

© Copyright IBM Corporation 2007

 Functions containing certain types of variables

are not protected:

– structures (ANI vulnerability)

– arrays of pointers or integers

void func(int count, int data)

{

int array[10];

int i;

for (i = 0; i < count; i++)

array[i] = data;

}

GS: Function Heuristics

© Copyright IBM Corporation 2007

 The function might use overwritten stack data

before the cookie is checked:

callee saved registers

copy of pointer and string buffer arguments

local variables

string buffers o

gs cookie v

exception handler record e

saved frame pointer r

return address f

arguments l

o

stack frame of the caller w

GS: Use of Overwritten Data

© Copyright IBM Corporation 2007

 Triggering an exception will give us control of

the program execution before the GS cookie

check.

– overwrite a pointer or counter variable

– overflow to the top of the stack

– application specific exceptions

 SEH records on the stack are not protected by

GS, but we have to bypass SafeSEH.

GS: Exception Handling

© Copyright IBM Corporation 2007

Opt-In Attacks

 Features requiring opt-in

– SafeSEH

– DEP

– ASLR

© Copyright IBM Corporation 2007

Opt-In Attacks - SafeSEH

 If DEP is disabled, we can just point an

overwritten SEH handler to the heap

 If DEP is enabled, SafeSEH protections can be

bypassed if a single unsafe DLL is loaded

– Flash9f.ocx

© Copyright IBM Corporation 2007

Opt-In Attacks - DEP

 Vista runs in opt-in mode by default

– Applications need to specifically opt-in to receive DEP

protections

 No need to bypass something that isn’t there..

– DEP not enabled in IE7 or Firefox 2

– IE8 and Firefox 3 opted-in

© Copyright IBM Corporation 2007

Opt-In Attacks - ASLR

 Vista randomizes only binaries that opt-in

– A single non-randomized binary is sufficient to bypass

ASLR (and DEP)

 Some major 3rd party plugins do not opt-in

– Flash

– Java

 Microsoft does not utilize ASLR for all binaries

– .NET runtime!

© Copyright IBM Corporation 2007

Heap Spraying

 Heap spraying

– JavaScript (bypasses ASLR)

– Java (bypasses ASLR and DEP)

© Copyright IBM Corporation 2007

 Heap spraying can bypass ASLR

– Consume large amounts of address space with

controllable data

 Only the beginning of the heap is randomized

– The maximum offset is 2MB

– If we allocate a chunk larger than 2MB, some part of it

will be at a predictable address

+3MB+2MB+0MB

Heap Spraying

© Copyright IBM Corporation 2007

 JavaScript heap spraying

– Defeats ASLR (but not DEP)

 64KB-aligned allocations allow us to put

arbitrary data at an arbitrary address

– Allocate multiple 1MB strings, repeat a 64KB pattern

64KB

64KB

Heap Spraying - JavaScript

© Copyright IBM Corporation 2007

Heap Spraying - Java

 The Sun JVM allocates all memory RWX
– DEP not an issue

– ASLR mitigated

Executable heap spraying code:

public class Test extends Applet {
static String foo = new String("AAAA...");
static String[] a = new String[50000];

public void init() {
for (int i=0; i<50000; i++) {

a[i] = foo + foo;
}

}
}

© Copyright IBM Corporation 2007

 Screenshot

0:031> !vadump

BaseAddress: 22cc0000

RegionSize: 058a0000

State: 00001000 MEM_COMMIT

Protect: 00000040 PAGE_EXECUTE_READWRITE

Type: 00020000 MEM_PRIVATE

Heap Spraying - Java

© Copyright IBM Corporation 2007

Stack Spraying

 Alternative to “Heap Spraying” with potential

bonuses

– Shellcode

– Meta-Data (saved EIP, etc)

– Pointers to user-controlled data

– Overwrite target in addition to shellcode buffer

 There are several difficulties

– Cannot be indefinitely expanded

– Often control contents directly

– Need recursive functions in a lot of cases

© Copyright IBM Corporation 2007

Stack Spraying

 Problems easily solved by .NET and Java!

– Thread constructors allow stack size of your choosing

– High degree of control over stack contents

– Creating pointers is simple too: objects/arrays/etc as

parameters/local variables

– Also usable to exhaust large parts of the address space

© Copyright IBM Corporation 2007

Stack Spraying

 Method 1: Overwrite Targets

– Fill the stack with useful pointers to overwrite

– Saved EIPs are probably most useful

– Create a recursive function to fill the entire stack

– Overwrite anywhere in the memory region for the win!

 Method 2: Generate Code

– Large amount of local variables

– Fill with executable code

– DEP will prevent execution, but this is also true of heap

spraying

© Copyright IBM Corporation 2007

Stack Spraying

© Copyright IBM Corporation 2007

Stack Spraying

 Method 3: Pointer Spraying

– Languages don’t allow pointer creation directly

– Declaring objects/arrays will create pointers

– Useful for exploits requiring indirection

© Copyright IBM Corporation 2007

Stack Spraying and ASLR

© Copyright IBM Corporation 2007

Stack spraying is definitely impressive!

© Copyright IBM Corporation 2007

.NET and IE

 IE allows embedding of .NET “User Controls”

– .NET equivalent of a Java applets

– Embedded in a web page using the <OBJECT> tag

<OBJECT classid="ControlName.dll#Namespace.ClassName">

– Unlike ActiveX, no warning in “Internet Zone”

 User controls are .NET DLLs

– That’s right – DLLs can be embedded in web pages!

– Similar to native DLLs with some additional metadata

– They can’t contain native code (IL-Only)

– Loaded into the process with LoadLibrary

© Copyright IBM Corporation 2007

.NET shellcode

 Loading User Controls is interesting in the context

of memory protections

– We can define memory region sizes

– Page protections are arbitrary

– In XP, Image base is directly controllable by the attacker

– On Vista, ASLR prevents direct load address control

 IL-Only binaries are always randomized, despite opting out of ASLR

 Load address can still be influenced

© Copyright IBM Corporation 2007

.NET Controls - Large DLLs

 Large DLL Method 1

– Create a large DLL

(~100MB)

– Must consume less

than “Standard DLL

range”

– Approximate load

location easily

guessable

© Copyright IBM Corporation 2007

.NET Controls - Large DLLs

 Large DLL Method 2

– Create even larger DLL

(~200MB)

– Approximate load

location easily

guessable

– Additional bonus:

Select addresses that

will bypass character

restrictions

© Copyright IBM Corporation 2007

.NET Controls - Large DLLs

 Problem: 100M+ is too much to download

– Pages will take too long to load

 Solution 1: Binary Padding

– For a given section, make the VirtualSize very large, and

SizeOfRawData 0 or small

– Zero-padded when mapped

– Repeating instruction “add byte ptr [eax], al”

– Needs EAX to point to writable memory

 Solution 2: Compression

– HTTP can zip up content on the fly

– Achieved with Content-Encoding header

© Copyright IBM Corporation 2007

.NET Controls - Large DLLs

 Large DLL Method 3

– Create large DLL

(Virtual Padding)

– Create smaller 16M

DLL with shellcode etc

– Compress smaller DLL

with HTTP

© Copyright IBM Corporation 2007

.NET Controls - Small DLLs

 Small DLL Method

– Embed a large number

of small DLLs (4-8K)

– About 300 of them is

enough (~20M)

– They all get placed on

64K boundaries in

“Standard DLL Range”

– Target any one of the

DLLs in range

© Copyright IBM Corporation 2007

.NET Controls – Statically Located DLLs

 Ideal situation is to have statically positioned,

self-supplied .NET DLLs

 ASLR enforced on IL-Only binaries

– Loader checks if binary is a .NET IL-Only binary and

relocates it anyway (no opting out)

– Is this effective? Not quite…

 Flagging an IL-Only binary depends on version

information read from .NET COR header!

© Copyright IBM Corporation 2007

.NET Controls – Statically Located DLLs

 Statically position DLL in 3 Simple steps

– Opt out of ASLR (unset
IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE)

– Select ImageBase of your choosing

– Change version in COR header (2.5 -> 2.4 is sufficient)

Code from MiCreateImageFileMap():

if((pCORHeader->MajorRuntimeVersion > 2 ||

(pCORHeader->MajorRuntimeVersion == 2 && pCORHeader->MinorRuntimeVersion >= 5)) &&

(pCORHeader->Flags & COMIMAGE_FLAGS_ILONLY))

{

pImageControlArea->pBinaryInfo->pHeaderInfo->bFlags |= PINFO_IL_ONLY_IMAGE;

…

}

© Copyright IBM Corporation 2007

 Demo

.NET Controls – Statically Located DLLs

© Copyright IBM Corporation 2007

.NET FTW!

Conclusion

Part IV:

© Copyright IBM Corporation 2007

Conclusion

 Vista memory protections are ineffective at

preventing browser exploitation

– Large degree of control attacker has to manipulate process

environment

– Open plugin architecture

– Single point of failure

 More work needed on secure browser architecture

 Questions?

