

Braving the Cold: New Methods for Preventing Cold Boot Attacks on Encryption Keys

Patrick McGregor, Ph.D.
Tim Hollebeek
Alex Volynkin, Ph.D.
Matthew White

BitArmor Systems, Inc.

COPYE

Outline

- Who cares about Full Disk Encryption, anyway?
- ▼ The anatomy of a Cold Boot Attack
- New software-based methods for defense
 - Tidy up at power down time
 - Built-in temperature monitoring
 - Taking advantage of default BIOS behavior
 - Efficient virtual compartmentalization
- **▼** Thoughts for the future

DPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

What is Full Disk Encryption (FDE)?

- Encrypts every bit of data on a disk or disk volume
 - Mostly used to encrypt laptop drives
 - Uses standard algorithms, e.g., AES, Triple DES
- User authentication used to decrypt disk keys
 - Some use different keys for different partitions
- In real time, sectors of a disk are read/written without impacting the user
 - The keys are stored persistently in memory to ensure high performance

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERV

3

BITARMOR

FDE: Why Do People Buy This Stuff?

▼ To mitigate risk

- Lowers chance losing data, being sued, being fined
- Data breaches can cost between \$90 and \$305 per record exposed
- Average cost: \$4.8 million per company per incident

Compliance

- Industry government regulations say certain data has to be encrypted
 - PCI DSS, OMB M-06-16, others

Avoiding breach notification requirements

- Laws in at least 39 states force disclosure of incidents
- Encryption is a "get out of jail free" card

DPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

User Work Patterns Can Increase Risks

★ BitArmor survey of 250 business users

- More than 40% of users leave laptops in sleep or hibernation mode when traveling
- No difference between techie users and business users!

■ Desktops matter too!

- Cold boot attacks apply to any PC type
- Desktops in screen lock mode are vulnerable

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

5

The FDE Market

★ How many companies have invested in it?

- 20% of companies reported encrypting laptops in 2007*
 - Most common application of encryption
- Based on analyst estimates, over \$200 Million sold in 2007**
- \$1 Billion total market potential

OPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

^{*}Ponemon Institute: 2008 Annual Study: U.S. Enterprise Encryption Trends

^{**}The 451 Group, deal analysis, Nov. 22, 2006, October 9, 2007

Disk Encryption Assumptions

Encryption keys

- Disk encryption key is unlocked during pre-boot authentication, and held in memory
- With standard algorithms, the disk encryption key and disk decryption key are the same
- Security of system depends on secrecy of decryption key

➤ PC Memory (DRAM)

- Standard PC memory is based on small capacitors, which slowly leak over time
- It does not hold information indefinitely, but needs to be periodically "refreshed"
- It is assumed that a disk decryption key cannot be recovered from DRAM after power is removed

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

9

Disk Encryption Reality

DECRYPTION KEY BITS PERSIST IN DRAM EVEN AFTER POWER IS LOST

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

Memory Remanence

DRAM drainage rates can be slow

- Information stored in DRAM becomes irrecoverable on a fairly short timescale (seconds)
- This time can be substantially longer on older hardware (c. 1999-2003)

Memory is not cleared during reboots

- Some machines zero out memory via a Power On Self Test (POST), but it is usually disabled
- ECC memory may also clear memory during initialization, but may systems do not use ECC
- OSes do not assume memory contains zeroes; they are responsible for initializing it, and provide the "illusion" that data doesn't survive reboots.

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

11

A Cold Boot Attacker's Bag of Tricks

■ Booting an alternative operating system

- A custom, alternative OS may boot and record memory values instead of overwriting them
- Alternative OSes may be quite small, overwriting very little memory
- Alternative OSes may be delivered via a wide variety of methods: USB, floppy, network ...

Physically transferring DRAM chips

- Memory chips may be transferred to an alternative computer with better characteristics (POST disabled, no BIOS password, spare hard drive for storage, no ECB support, etc.)
- The allowable time period for a transfer can be significantly extended by chilling the memory to -50° C or colder

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

- Several cooling techniques are possible
 - Natural environmental cooling
 - Aerosol cans
 - Liquid nitrogen

Key Recovery and Reconstruction

Keys are readily identifiable in DRAM

- Key material, and expanded key schedules in particular, have very distinctive patterns in memory
- May not be necessary to understand memory layout or reverse engineer the encryption software in order to recover the key

Princeton reconstruction algorithms are efficient

- Redundancies allow keys to be recovered even in the presence of a moderate number of bit errors in the key schedule
- Reconstruction possible unless bit value ambiguity makes brute forcing all possibilities infeasible
- 25% error rates are tolerable in certain cases

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

15

New Software Defenses against Cold Boot Attacks

- ★ Implement several defenses against the most feasible Cold Boot Attack scenarios
 - Use software, not any new hardware

Address scenarios where computer physically stolen:

- Shortly after being turned off
- While hibernating
- While sleeping
- While screen locked

OPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

Defense # 1: No Power, No Keys*

- **▲** Address scenarios where computer physically stolen:
 - Shortly after being turned off
 - While hibernating
 - While sleeping
 - While screen locked
- ➤ Idea: Discard keys in memory immediately before power down
 - Princeton paper citation not sufficient for FDE keys
 - We propose a simple OS-driven approach

* Patent pending.

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

17

Key Scrubbing

- ➤ Prevents key material from being available after shutdown or hibernation
- Machine must be "cleanly" shutdown or hibernated
- **▼** Feasible through Windows OS mechanisms

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

BITARMOR

Implementation

X Notification

- Handle power state IRP in filter driver
 - Recognize when machine entering state S5
- Overwrite cryptographic keys with zeroes
 - In memory (DRAM)

⋈ Booting

- Obtain keys using an authentication procedure
- ➤ Possible for Windows 2000, XP, Server 2003, Vista, Server 2008

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

Additional Defenses

- **▲** Address scenarios where computer physically stolen:
 - Shortly after being turned off
 - While hibernating
 - While sleeping
 - While screen locked
- Consider three attack vectors:
 - 1. Booting alternate OS (remote or local), no RAM transfer
 - 2. Cooling RAM before power loss, RAM transfer
 - 3. Cooling RAM immediately after power loss, RAM transfer

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

21

Defense # 2: BIOS Is Our Friend*

- **▼** Consider three attack vectors:
 - 1. Booting alternate OS (remote or local), no RAM transfer
 - 2. Cooling RAM before power loss, RAM transfer
 - 3. Cooling RAM immediately after power loss, RAM transfer
- ▼ Idea: Take advantage of certain specific default behavior of BIOS that would apply to all PC architectures
 - The defense will work no matter what OS is used by an attacker

* Patent pending

DANGERT & JUNE BILADWING CALLER INL. VIII BICTIC DECEDITED

Defense # 3: Watch for Fleeing Joules*

- Consider three attack vectors:
 - 1. Booting alternate OS (remote or local), no RAM transfer
 - 2. Cooling RAM before power loss, RAM transfer
 - 3. Cooling RAM immediately after power loss, RAM transfer
- - Princeton paper only discussed specialized hardware for detecting temperature variations
 - We can instead use common, built-in sensors!

^{*} Patent pending.

Temperature Detection

- Modern motherboards have temperature sensors embedded for heat control in various zones including RAM
- ➤ Sensor data is readily available from the OS and BIOS
- Sensitive decryption keys can be erased by software when extreme drop in temperature for RAM zone is detected

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

Sensor Reliability Facts

- ★ Sensors can report low temperatures to -65C° with accuracy ±3C°
- ➤ Sensors are infused into the board. This mitigates risk of sensor tampering.
- Sensor response time is on the order of milliseconds. Actions can be taken immediately.

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

20

BITARMOR

Cooling Down RAM

Cooling down RAM causes measurable temperature drop in Memory Zone

RAM blasted with Difluoroethane (aerosol propellant).

Sensor registers -30F°

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

Erasing Decryption Keys

- Sensitive decryption keys can be immediately erased by software when extreme drop in temperature for RAM zone is detected
- **▼** Poll temperature sensors using either:
 - Direct access to sensor controller
 - OS API: WMI:MSAcpi ThermalZoneTemperature
- Temperature detection
 - Analyze rate of drop
 - Analyze absolute temperature against threshold

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

31

Defense # 4: A Virtual Secure Enclave for Storing and Using Keys*

- Consider three attack vectors:
 - 1. Booting alternate OS (remote or local), no RAM transfer
 - 2. Cooling RAM before power loss, RAM transfer
 - 3. Cooling RAM immediately after power loss, RAM transfer
- Idea: Using OS, processor, and cryptographic techniques, efficiently create a secure enclave for exercising disk keys
 - Technique would also defend against case where temperature sensing is thwarted
 - Princeton paper options cannot meet performance and key availability requirements of FDE systems

^{*} Patent pending.

FDE Key Management: Three Problems

- Any data stored in memory may be available to attacker with relatively high fidelity
 - With cooling, bit error rate might be extremely low (tens of errors over MBs of data)
- Since encryption/decryption is needed for every disk I/O operation, keys must be perpetually available
 - If keys require significant time to compute, performance may be adversely affected
- ✓ If encryption/decryption is in progress, exposure of intermediate values may compromise key
 - Full AES keys can be recovered from portions of AES round keys

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

33

The Solution

- ▲ Long-term disk data is protected using a key that can be quickly derived from a huge number of DRAM bits
- Short-term key data is stored in plaintext only in processor registers
- Spilling of sensitive data is avoided by running at high interrupt priority

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

The Solution

- Long-term disk data is protected using a key that can be quickly derived from a huge number of DRAM bits
- Short-term key data is stored in plaintext only in processor registers
- Spilling of sensitive data is avoided by running at high interrupt priority

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

Empirical Results on Memory Remanence

Detailed understanding of decay profile is critical

- For a defense like ours, time-to-first flip is more important than time-to-average flip
- There has been no published systematic exploration of dependence of either of these values on temperature or other variables (bus speed, density, how long the value was held, etc.)

■ But, bit decay happens

- Order of decay is fairly deterministic, with some bits decaying quickly and others slowly
- Majority of decay happens over a relatively short time period
- Modern DRAM decays much faster than DRAM of 10 years ago (or even 3 years ago!)

OPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

The Solution

- ➤ Long-term disk data is protected using a key that can be quickly derived from a huge number of DRAM bits
- ➤ Short-term key data is stored in plaintext only in processor registers
- Spilling of sensitive data is avoided by running at high interrupt priority

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

Want to Avoid Having Key Material in Memory at *Any* Time

■ Use MMX and SSE registers to store key material

- Primarily intended for multimedia SIMD applications
- Powerful but underutilized

Benefits

- Relatively volatile
- Permits much faster encryption implementation
- Can store entire expanded AES key schedule

Annoyance

Instruction set is not exactly "general purpose"

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

The Solution

- ➤ Long-term disk data is protected using a key that can be quickly derived from a huge number of DRAM bits
- Short-term key data is stored in plaintext only in processor registers
- Spilling of sensitive data is avoided by running at high interrupt priority

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

Thoughts for the Future

- Cold Boot Attacks on encryption keys can be prevented with software solutions
- ➤ Both attacks and defenses can (and will) continue to evolve
- ➤ Need to start thinking about what sorts of architectural changes can be made to support secure computing in the future
- Availability of secure, long-term storage on CPUs would be a big win

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE

47

Thank you!

For more information, check out: www.bitarmor.com/coldboot

Also, special technical thanks to
Jesse Twardus, Tim Shirley, and Ed Felten

OPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVED

Why We're Here

- ➤ Founders and engineers from BitArmor, a software company that leverages encryption in unique ways
- Extensive research and development backgrounds in security and cryptography
- McGregor's association with Cold Boot: Collaborated with Prof. Ed Felten's research group while completing Ph.D. at Princeton; his research cited in Cold Boot paper

COPYRIGHT © 2008 BITARMOR SYSTEMS, INC. ALL RIGHTS RESERVE