
Developments in 
Cisco IOS Forensics

Felix ‘FX’ Lindner
BlackHat Briefings

Las Vegas, August 2008



Agenda

IP Routing Infrastructure and Cisco IOS
Cisco IOS Internals
Debugging and Post Mortem Analysis Today
A New Analysis Approach

Proposal
Features
Challenges

Public Offer
Future Work



IP Routing Infrastructure

The Internet and corporate networks almost 
exclusively run on the Internet Protocol

IP Version 4 is still prevalent protocol
IP Version 6 coming up very slowly

The design of IP requires intelligent nodes in 
the network to make routing decisions

This is a design principle of the protocol and 
cannot be changed
“Flat” networks have their own issues



IP Infrastructure & Security

All security protocols on top of IP share 
common design goals:

Guarantee end-to-end integrity (some also 
confidentiality) of the traffic
Detect modification, replay, injection and holding 
back of traffic
Inform the upper protocol layers

None of them can recover from attacks rooted 
in the routing infrastructure

Security protocols cannot influence routing



Infrastructure Monoculture
Cisco Systems’ routing platforms form the single 
largest population of networking equipment today

Equivalently distributed in the Internet core, government 
and corporate networks
Many different hardware platforms with different CPUs
Large investment sums bound to the equipment
Hard to replace
All run basically the same operating system

Protecting this infrastructure is critical
Therefore, in-depth analysis and diagnostics are of 
paramount importance



Cisco IOS

Cisco® Internetwork Operating System®
Monolithic operating system
Compile-time linked functionality –
the 3 dimensional complexity of IOS

Platform dependent code
Feature-set dependent code
Major, Minor and Release version dependent code

Several tens of thousands different IOS images 
used in today’s networks

Over 10.000 still officially supported 



Inside Cisco IOS

One large ELF binary
Essentially a large, statically linked UNIX 
program

Loaded by ROMMON, a kind-of BIOS
Runs directly on the router’s main CPU

If the CPU provides virtual memory and privilege 
separation (for example Supervisor and User 
mode on MIPS), it will not be used



Inside Cisco IOS

Processes are rather like threads
No virtual memory mapping per process

Run-to-completion, cooperative multitasking
Interrupt driven handling of critical events

System-wide global data structures 
Common heap
Very little abstraction around the data structures
No way to force abstraction



The IOS Code Security Issue

12.4(16a) with enterprise base feature set consists of 
25.316.780 bytes binary code!

This is a 2600 with PowerPC CPU
Not including 505.900 bytes firmware for E1T1 and 
initialization

All written in plain C
Sharing the same address space
Sharing the same heap
Sharing the same data structures
Sharing millions of pointers



The IOS Code Security Issue

A single mistake in the most unimportant 
piece of code can influence anything on the 
system, including kernel, security subsystems 
and cryptographic code.
Therefore, everything on IOS is a good target 
for remote code execution exploits in kernel 
context.



Isn’t Cisco aware of that?
Cisco recently started the distribution of the next generation 
IOS-XR

Commercial QNX microkernel
Real processes (memory protection?)
Concurrent scheduling
Significantly higher hardware requirements (as in Cisco 12000 !)

People never use the latest IOS
Production corporate networks usually run on 12.1 or 12.2, which 12.5 
is already available
Not even Cisco’s own engineers would recommend the latest IOS 
release to a customer
That only covers people actively maintaining their 
network, not everyone running one



Just, how often 
are routers hacked?

Keynote speaker Jerry Dixon at BlackHat Washington DC 
mentioned not updated routers as a cause for concern

Do you know how expensive that is?
Old vulnerabilities like the HTTP level 16 bug are still actively 
scanned for

The router is used as a jump pad for further attacks
TCL backdoors are commonly used
Patched images are not rare

IOS images cost money
People will use images from anywhere
Patching images is not hard

Lawful Interception is its own can of worms
The router’s operator is not supposed to know that LI is performed
Who watches the watchers?



And the future?
Ever noticed attackers take on the target with the 
lowest efforts required and the highest return of 
invest?

Windows became just a lot harder
UNIXes are hardened, even OS X
Infected PCs leave obvious traces

The question is not: 
“Will routers become a target?”
The question should be: 
“Do we want to know when they did?”
Check the speaking schedule: 3 IOS talks here, 
2 of them on attack methods 



Summary – Part I

A significant share of the Internet, 
governmental and corporate networks runs on:

one out of several tens of thousands of builds
of more or less the same code base
in a single process environment

... and we cannot bypass it, even if we could 
tell that it’s compromised

Next question: How can we even tell?



Error Handling and Recovery

The software architecture of IOS dictates how 
exception handling has to be done

Remember, IOS is like a large UNIX process
What happens when a UNIX process segfaults?

Upon an exception, IOS can only restart the 
entire system

Even on-board, scheduled diagnostic processes 
can only forcefully crash the system



Crash Cause Evidence

Reboot is a clean recovery method
Reboot destroys all volatile evidence of the 
crash cause

Everything on the router is volatile!
Exception: startup configuration and IOS image

Later IOS releases write an information file 
called “crashinfo”

Crashinfo contains very little information
Contents depend on what IOS thought was the 
cause of the crash



Runtime Evidence

Crashinfo is only written upon device crashes
Successful attacks don’t cause device crashes
The available methods are:

Show commands
Debug commands
SNMP monitoring
Syslog monitoring



Show Commands

IOS offers a plethora of inspection commands 
known as the “show” commands

Requires access to the command line interface
Geared towards network engineers
Thousands of different options and versions
Almost no access to code

12.4 even limits memory show commands



Debug Commands
“debug” enables in-code debugging output
Debug output has scheduler precedence

Too much debug output halts the router
Not an option in production environments 

Enabling the right debug output is an art
Turn on the wrong ones and you see very little
Turn on too many and the router stops working
Commands depend on the IOS version

For debug commands to be useful, you have to know 
what you are looking for before it happens

Not very useful for security analysis



SNMP and Syslog Monitoring

Commonly accepted method for monitoring 
networking equipment
SNMP depending on the implemented MIB

Geared towards networking functionality
Very little process related information

Syslog is about as useful for security monitoring on 
IOS as it is on UNIX systems
Both generate continuous network traffic
Both consume system resources on the router
Then again, someone has to read the logs.



Summary – Part II

Identifying compromised routers using today’s 
tools and methods is hard, if not impossible.
There is not enough data to perform any post 
mortem analysis of router crashes, security 
related or not.
We cannot distinguish between a functional 
problem, an attempted attack and a successful 
attack on infrastructure running IOS.



A (not so) New Approach

We need the maximum amount of evidence
A full snapshot of the device is just enough

We don’t need it continuously
We need it on-demand 
We need it when the device crashes

We need an independent and solid analysis 
framework to process the evidence

We need to be able to extend and adjust it



Getting the Evidence

Cisco IOS can write complete core dumps
Memory dump of the main memory
Memory dump of the IO memory
Memory dump of the PCI memory (if applicable)

Core dumps are written in two cases
The device crashes
The user issues the “write core” command



Core Dump Destinations

IOS supports various destinations
TFTP server (bug!)
FTP server
RCP server
Flash file system (later IOS releases)

Core dumps are enabled by configuration
Configuration commands do not differ between 
IOS versions
Configuration change has no effect on the 
router’s operation or performance



Core Dump 
Enabled Infrastructure

Configure all IOS devices to dump core onto 
one or more centrally located FTP servers

Minimizes required monitoring of devices: A router 
crashed if you find a core dump on the FTP server
Preserves evidence
Allows crash correlation between different routers

Why wasn’t it used before?
Core dumps were useless, except for Cisco 
developers and exploit writers.



Analyzing Core Dumps

Disclaimer:
Any of the following methods can be 
implemented in whatever your preferred 
programming language is.
This presentation will be centric to our 
implementation: Recurity Labs CIR.



Core Dump 
Analyzer Requirements

Must be 100% independent
No Cisco code
No disassembly based analysis

Must gradually recover abstraction
No assumptions about anything
Ability to cope with massively corrupted data

Should not be exploitable itself
Preferably not written in C



The Image Blueprint

The IOS image (ELF file) contains all required 
information about the memory mapping on the 
router.

The image serves as the memory layout blueprint, to be 
applied to the core files
We wish it were as easy as it sounds

Using a known-to-be-good image also allows 
verification of the code and read-only data segments

Now we can easily and reliably detect runtime patched 
images



Heap Reconstruction
IOS uses one large heap
The IOS heap contains plenty of meta-data for 
debugging purposes

40 bytes overhead per heap block in IOS up to 12.3
48 bytes overhead per heap block in IOS 12.4

Reconstructing the entire heap allows extensive 
integrity and validity checks

Exceeding by far the on-board checks IOS performs during 
runtime
Showing a number of things that would have liked to stay 
hidden in the shadows 



Heap Verification
Full functionality of “CheckHeaps”

Verify the integrity of the allocated and free heap block 
doubly linked lists

Find holes in addressable heap
Invisible to CheckHeaps

Identify heap overflow footprints
Values not verified by CheckHeaps
Heuristics on rarely used fields

Map heap blocks to referencing processes
Identify formerly allocated heap blocks

Catches memory usage peaks from the recent past



Process List

Extraction of the IOS Process List
Identify the processes’ stack block

Create individual, per process back-traces
Identify return address overwrites

Obtain the processes’ scheduling state
Obtain the processes’ CPU usage history
Obtain the processes’ CPU context

Almost any post mortem analysis method 
known can be applied, given the two 
reconstructed data structures.



TCL Backdoor Detection
TCL scripting is available on later Cisco IOS versions
TCL scripts listening on TCP sockets 

Well known method
Used to simplify automated administration
Used to silently keep privileged access to routers
Known bug: 
not terminated when the VTY session ends (fixed)
Simple TCL backdoor scripts published

CIR can extract all TCP script chunks from IOS heap 
and dump them for further analysis

There is still some reversing work to do



Random Applications

Find occasional CPU hogs
Detect Heap fragmentation causes
Determine what processes where doing
Finding attacked processes

See examples (Semi-DEMO)
Research tool

Pointer correlation becomes really easy
Essential in a shared memory environment



IOS Packet 
Forwarding Memory

IOS performs routing either as:
Process switching
Fast switching
Particle systems
Hardware accelerated switching

Except hardware switching, all use IO memory
IO memory is written as separate code dump
By default, about 6% of the router’s memory is dedicated 
as IO memory

In real world installations, it is common to increase the percentage 
to speed up forwarding

Hardware switched packets use PCI memory
PCI memory is written as separate core dump



IO Memory Buffers
Routing (switching) ring buffers are grouped by 
packet size

Small
Medium
Big
Huge

Interfaces have their own buffers for locally handled 
traffic
IOS tries really hard to not copy packets around in 
memory
New traffic does not automatically erase older traffic 
in a linear way



Traffic Extraction

CIR dumps packets that were process switched by 
the router from IO memory into a PCAP file

Traffic addressed to and from the router itself
Traffic that was process switching inspected

Access List matching
QoS routed traffic

CIR could dump packets that were forwarded 
through the router too

Reconstruction of packet fragments possible
Is it desirable?



Advanced Traffic Extraction
Writing core to a remote server uses IO memory

Overwrites part of the traffic evidence
CIR can use a GDB link instead of a core dump

Serial GDB protocol allows direct access to router memory 
via the console
Uses Zynamics GDB debug link

Disconnecting all network interfaces preserves IO 
and PCI memory contents

Using GDB halts the router
All data is preserved – useful for emergency 
inspections



Traffic Extraction Applications

Identification of attack jump pad routers
0day identification against systems on 
segmented network interfaces

If you got the packet, you got the 0day
Spoofing attack backtracking

One hop at the time, obviously
LE detection



Reality Check: 
March’s Vulnerabilities

“Cisco IOS Virtual Private Dial-up Network Denial of Service 
Vulnerability”

Memory exhaustion / leak 
Visible by heap usage analysis

“Cisco IOS User Datagram Protocol Delivery Issue For 
IPv4/IPv6 Dual-stack Routers”

“The show interfaces command can be used to view the input queue 
size to identify a blocked input interface.”
CIR could output all the packets that are still in the queue, even 
allowing source identification

“Vulnerability in Cisco IOS with OSPF, MPLS VPN, and 
Supervisor 32, Supervisor 720, or Route Switch Processor 
720”

see above



Challenges
The analysis framework has to handle the complexity of the Cisco IOS 
landscape 

Hardware platforms 
Image versions
Any-to-Any relation!

CIR is currently IOS feature set independent
CIR successfully tested against IOS 12.1 – 12.4
Official support starts with:

Cisco 2600
Internal testing already covers:

Cisco 1700
Cisco 2691 
Cisco 6200

The platform is the major source of work, testing and verification



Summary – Part III
Writing core dumps is a viable method for obtaining 
IOS evidence when it is needed.

The evidence includes forwarded and received packets.
An independent analysis framework can distinguish 
between bugs and attacks, enabling real forensics 
on IOS routers.
Recurity Labs’ CIR already reliably identifies many 
types of attacks and IOS backdoors.

CIR is work-in-progress
CIR’s future depends on the feedback we receive from the 
community.



Availability

1. CIR Online Service (free)
2. CIR Rootkit Detector (free)
3. CIR Professional (non-free)



CIR Online

An analysis framework’s quality is directly related to 
the amount of cases it has seen

CIR needs a lot more food to grow up
We want to provide it to everyone while constantly 
developing and improving it

Free Service: http://cir.recurity-labs.com
Processing on our servers
Always using the latest version
Right now, CIR Online runs in BETA state



CIR Rootkit Detector

Detection of image modification
Detection of runtime code modification
Support for all access layer platforms
Freely available at http://cir.recurity-labs.com
Currently in BETA state



At the end, it’s all up to you!

We think CIR could be useful
For the networking engineer
For the forensics professional
To finally know the state of our infrastructure

We know what we can do
We need advise on where you want this tool 
to be in the future



cir.recurity-labs.com

Felix ´FX´ Lindner
Head

fx@recurity-labs.com

Recurity Labs GmbH, Berlin, Germany
http://www.recurity-labs.com


