Virtually Secure

Oded Horovitz
VMware R&D

Talk Overview

Setup
* Virtualization 101
» Talk Focus

VM Introspection

o Capabilities

« Sample Use Cases (and demos)
Magics

* Retrospective Security

Misc & QA

Setup Virtualization 101

Key Terms
« VMM
* Hypervisor App || App
» Hosted
» Bare Metal 0S
Management
Interfaces

Setup Talk Focus

Virtualization Based Capabilities
» Better than physical
» Hypervisor as a Base of Trust
e Security as an infrastructure service

Also Important But not Today
Secure Virtualization Infrastructure
» Secure & Manageable Platform
Physical Equivalent Security

» Support existing tools and agents
* Prevent security coverage loss when P2V

Security Agent —common agents

Firewall Anti Phishing

Network

Stack Browser

Hypervisor

(&) vmware

Introspection

Physical Security - Shortcomings

pack

—_—

U

Write
file

ile

+BF|@ Loader Ema«d

Code Packing
» AV see packed file
» Unpacking method is unknown

Rewrite * No opportunity for detection

self

Packed
malware

file

Introspection Physical Security - shortcoming

Vulnerabilities
* Buggy service is exploited
* New code is injected
« File system never sees the new exploit

code (unless it is paged out..)
B execu‘reA
uggy ,
code o o

Existing solutions
* Program shepherding
« ASLR
e NX

No good coverage for kernels

(&) vmware

Introspection Physical Security - shortcoming

OS coverage
» Agent is depended on its host (instantiated by host)
* A window of opportunity exist to subvert system
 Solution - Boot into alternate OS and scan?

drivers

Platform

N Devices
code

VM Introspection

CPU events
* Privileged instruction
» Exceptions
e Interrupts
/O
o Arbitrary Instruction op-code —,
e Instruction breakpoint

>— HV unfriendly
e Control flow

VM Introspection

Memory event
e Granular CPU read / write
- Granular device read / write | HV unfriendly
_ _ High overhead
e Linear addressing

* Page granularity
* Physical addressing

Read /
write /
"execute"

VM Introspection

Security API's
» Designed for security productization
e Agent runs within a VM
« Capabillities
-Memory access events
*Selected CPU events
*\VVM lifecycle events

eAccess to VM memory & CPU state
*Page Table walker

Introspection Security APIs (VMsafe)

Goals

 Better than physical
» Exploit hypervisor interposition to place new security agent
* Provide security coverage for the VM kernel (and applications)

* Hypervisor as a Base of Trust
 Divide responsibilities between the hypervisor and in-VM agent

* The hypervisor covers the VM kernel, the rest is done from within the VM
* Insure in-VM security agent execution and correctness

e Security as an infrastructure service
» “Agent less” security services for VMs
* Flexible OS independent solutions

Introspection Verify-Before-Execute Flow

Power On

A

Query VM

VM Information

A

Install Triggers

Page access event

A

Security
Agent Query CPU & Memory state

CPU State & Memory Pages

A

Install / Remove Triggers

Power Off

A

Sample Introspection Agents

Verify-Before-Execute
Utilize memory introspection to validate all executing pages

Flow
1. Trace all pages for execution access | NX | NX | NX | NX | NX

1. On execution detection NX NX | NX | NX
» Trace for page modification
« Verify if page contain malware NX / NW
« Remove execution trace NX / NW Is bad?
NW

1. On modification detection
 Trace for execution NW / NX
« Remove modification trace

NX

Introspection Security APIs — Use cases

VM Kernel coverage

* Detect infection in early boot process

e Device opt ROM attacks

* Boot loader

 Bootrecords

« OSimage
» Detect code injection due to kernel vulnerabilities
» Detect self modifying code in kernel

 Lock kernel after initialization

Introspection Case Study - Microsoft Patch Guard

Goal
* Prevent patching of (x64 based) kernels
» Force ISV to behave nicely
* Prevent Root-kits ?7?

Implementation
» Obfuscated Invocation
» Obfuscated Persistence
» Evolving (Thanks to the awesome work from uninformed.org)

What's The Problem?
» Circumventable
o Complicated
* Only for x64 based Windows Systems

Introspection Kernel Security Demo

“MyPatchGuard”

o Secure & Isolated Agent

* Inline enforcement using memory write triggers.
* Protect Windows XP guest syscalls table

e Simple.

Introspection Security APIs — Use cases cont’

Watch dog services

* Liveness check for in-VM security agent
» Detect agent presence
» Verify agent periodic execution
* Protect agent code and static data

Introspection TPM vs. Introspection

TPM VM Introspection
* Root of trust rely on hardware * Root of trust rely on hypervisor
» Passive device * Introspection agent have the
initiative

* Platform and software stack
decide what to measure o Security vendor / policy dictate

* Need software update to what to measure
change measurement Coverage is content, and can
coverage change independently of VM

« Can not detect compromise Designed to continuously scan
in software stack since VMs and to detect compromise
verification

Introspection VMsafe — Network Introspection

Capabilities
* Place an inline network agent on any VM virtual nic
» Allow reading, injecting, modifying, and dropping packets.

Benefits
» Efficiently monitor inter-VM network communication
* Integrated support for live migration.

Virtualization only applications

» Correlate VM internals with network policy. (using CPU/ Memory
iInspections one can learn OS version, patch level, configuration
etc)

» Build a trusted distributed firewall.

Talk Overview

Setup
* Virtualization 101
» Talk Focus

VM Introspection

« Capabilities

« Sample Use Cases (and demos)
Magics

* Retrospective Security

Misc & QA

Magics Retrospective Security

Motivation
» Detect whether you have been attacked in the past
» Detect if you might be still compromised by a past attack

Method

 VMware Record & Replay allow for a deterministic replay of VM
using recorded logs

» Potentially the recordings have captured an attack

» The security API's are detached from the recorded VM (unlike in-
VM agent) and can attach to a replay session

Magics Retrospective Security

Demo

What is it good for?

* Run more aggressive policies that will not be acceptable in
production environments

Discover Odays used to exploit your system
Learn how the malware / attacker have navigated your system

Use data tainting technique to detect any side effects that still exist
on your system

Possibly clean the finding from last step on your production VM.

Learn about the scope of the damage done to your system, i.e.
what is the extent of data leakage

Misc Security vs. Hardware Virtualization

1st Generation — SVM, VT-X

VMM no longer need to run the VM kernel under binary translation

» Security Trade off — Code Breakpoint, Guest code patching (while
translating), Control flow visibility

2nd Generation — NPT, EPT

VMM no longer need to have software based MMU

» Security Trade off — Tracking LA->PA mapping is becoming
expensive, resulting with inability to operate on linear addresses.

34 Generation — IO MMU, VT-D

VMM can assign physical devices to VMs without worry of VM
escape or hypervisor corruption

e Security Trade off — Interposition on the pass-thru device is
eliminated

Conclusion

Questions?

Contact
odedh@vmware.com

