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“Shadow Walker” — Raising The Bar
For Rootkit Detection 

Last year at Black Hat, we introduced the rootkit FU. FU took an

unprecented approach to hiding not previously seen before in a

Windows rootkit. Rather than patching code or modifying function

pointers in well known operating system structures like the system

call table, FU demonstrated that is was possible to control the

execution path indirectly by modifying private kernel objects in

memory. This technique was coined DKOM, or Direct Kernel Object

Manipulation. The difficulty in detecting this form of attack

caused concern for anti-malware developers. This year, FU teams

up with Shadow Walker to raise the bar for rootkit detectors once

again. In this talk we will explore the idea of memory subversion.

We demonstrate that is not only possible to hide a rootkit driver

in memory, but that it is possible to do so with a minimal

performance impact. The application (threat) of this attack

extends beyond rootkits. As bug hunters turn toward kernel level

exploits, we can extrapolate its application to worms and other

forms of malware. Memory scanners beware the axiom, ‘vidre est

credere’. Let us just say that it does not hold the same way that it

used to.
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““SHADOW WALKERSHADOW WALKER””
Raising The Bar For Rootkit DetectionRaising The Bar For Rootkit Detection

by Sherri Sparks & Jamie Butler

What Is A Rootkit?What Is A Rootkit?

• Defining characteristic is stealth.

– Viruses reproduce, but rootkits hide!

• Greg Hoglund, author of NT Rootkit

defines a rootkit as “a set of programs

which patch and trojan existing execution

paths within the system”.
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What is a rootkit used for?What is a rootkit used for?

• It is usually used by a hacker to conceal

his / her presence on a compromised

system and make it possible to return

undetected at some later date.

• Indirect overlap with parental control

software and spyware.

Rootkits & x86 Hardware Architecture:Rootkits & x86 Hardware Architecture:

Pentium Protection RingsPentium Protection Rings

• Ring 0 – full access to all

memory and the entire

instruction set.

– Kernel Rootkits

• Ring 3 –restricted

memory access and

instruction set availability.

– User Rootkits
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Rootkits & The Operating SystemRootkits & The Operating System

• The user / application
view of the system is
defined by what the OS
provides to it via the API
interface.

• A rootkit hides by
intercepting and altering
communications at the
interfaces between
various OS components.

• Rootkits are a form of
“man in the middle
attack”.

OS Components Attacked ByOS Components Attacked By

RootkitsRootkits

• I/O Manager
– Logging keystrokes or network activity

• Device & File System Drivers
– Hiding files

• Object Manager
– Hiding object (process / thread) handles.

• Security Reference Monitor
– Disable security policies governing runtime access checks on

objects.

• Process & Thread Manager
– Hiding processes & threads

• Configuration Manager
– Hiding registry entries
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First Generation RootkitsFirst Generation Rootkits

• Replaced / modified system files on the

victim’s hard disk

• Example: UNIX login program

Second Generation RootkitsSecond Generation Rootkits

• Modify static OS components /

structures loaded in memory.

– Table based hooking approaches (IAT, EAT,

SSDT, IDT)

– Inline function hooking

– Kernel and user mode rootkits
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Third Generation RootkitsThird Generation Rootkits

• Modify dynamic OS objects loaded in
memory.

– Direct Kernel Object Manipulation (DKOM)
• Example: FU Rootkit

– Unlinks process objects from the Windows dynamically
linked list of active process objects.

– Kernel objects represent just about everything
in the system (processes, threads, drivers,
security tokens, ect.) so the possibilities are
virtually unlimited.

– Exclusively kernel mode rootkits.

Process Hiding w/ DKOMProcess Hiding w/ DKOM
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Current Rootkit DetectionCurrent Rootkit Detection

MethodsMethods

• Behavioral Detection

• Integrity Detection

• Signature Based Detection

• Diff Based Detection

Rootkit File SystemRootkit File System

DetectionDetection

• Signature Scanners – AV Products

• Integrity Checkers – Tripwire

• Diff Based Approach

– Microsoft Strider GhostBuster

– System Internals Rootkit Revealer

– F-Secure Blacklight
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Behavioral DetectionBehavioral Detection

• Attempts to detect the effects of a rootkit on
the victim system which means it may detect
previously unknown rootkits.

– Detecting diverted execution paths.
• Deviations in executed instructions – PatchFinder by

Joanna Rutkowska

• Detecting Hooks – VICE by Jamie Butler

– Detecting alterations in the number, order, and
frequency of system calls.

• May suffer from a high false positive rate.
– Most end users don’t have the skill to screen out

false positives.

Integrity CheckingIntegrity Checking

• Detects unauthorized changes to system files or

to loaded OS components in memory.

• Creates an initial baseline database containing

their CRC values.

• Periodically calculates and compares the CRC’s

of these files against the initial trusted baseline.

– Example: Tripwire

• Files system integrity checks are ineffective against most

modern rootkits which make their changes to memory rather

than system files on the disk.
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Signature Based DetectionSignature Based Detection

• “Fingerprint Identification”

– Searches memory or the file system for
unique byte patterns (signatures) found in the
rootkit’s code.

– Tried N’ True Approach - Has been used by
AV scanners for many years.

– Highly accurate, but ineffective against
unknown rootkit / malware variants (for which
a signature does not exist) or deliberately
obsfucated code.

MotivationsMotivations
 Shortcomings Of Current Rootkit Technology Shortcomings Of Current Rootkit Technology

• The most advanced public kernel rootkits are

sitting ducks for primitive signature scans and

integrity checking techniques.

– Large parts of rootkit drivers themselves sit in non

paged memory leaving them vulnerable to simple

signature scans of system memory.

– Rootkit modifications to operating system

components in memory give them away to memory

integrity checkers heuristic checkers like VICE.

– Need a method to hide the rootkit driver code and

its modifications to kernel memory.
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Early Viruses Faced AEarly Viruses Faced A

Similar ProblemSimilar Problem
• Viruses sought to hide their code from file

system signature scanners.

– Their solution: Polymorphism / Metamorphism

– Attempts to vary the appearance of the viral code

from one variant to another.

• Functionally equivalent, but semantically different

copies of the code.

– Few rootkits have integrated viral polymorphic

techniques.

Introducing Shadow WalkerIntroducing Shadow Walker
Prototype For A 4Prototype For A 4thth Generation Rootkit?Generation Rootkit?

• An alternative to viral polymorphism – Virtual

Memory Subversion!

• Proof of concept demonstration that a rootkit is

capable of transparently controlling the

contents of memory viewed by other

applications and kernel drivers.

• Minimal performance impact !
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Implications Of VirtualImplications Of Virtual

Memory SubversionMemory Subversion
• In-memory security scanners rely upon the

integrity of their view of memory even if they don’t

rely upon Operating System API’s (which may

potentially be hooked).

• If we can control a scanner’s memory reads we

can fool signature scanners and potentially make

a known rootkit, virus, or worm’s code immune to

in-memory signature scans!

• We  can also fool integrity checkers and other

heuristic scanners which rely upon their ability to

detect modifications to code (i.e. VICE).

ReviewReview

• Windows virtual address space layout

• Virtual Memory

– Paging vs. Segmentation

– Page Tables & PTE’s

– Virtual To Physical Address Translation

– The Role Of The Page Fault Handler

– The Paging Performance Problem & the
Translation Lookaside Buffer

– Memory Access Types
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Windows Virtual AddressWindows Virtual Address

Space LayoutsSpace Layouts

Application code
Global variables

Per-thread stacks

DLL code

Ntoskrnl

HAL

Boot drivers

Process page tables

System cache
Paged pool

Nonpaged pool
0xFFFFFFFF

0xc0800000

0x80000000
0x7FFFFFFF

0x00000000

System 
Space

User 

Space

3-GB 

User space

1-GB

System space

0xFFFFFFFF

0xC0000000
0xBFFFFFFF

0x00000000

Virtual MemoryVirtual Memory

• Separate virtual and physical address spaces.

• Virtual & physical address spaces are managed
by dividing them into fixed size blocks.
– Paging: All blocks are the same size.

– Segmentation: Blocks may be different sizes.

• The OS handles virtual physical block
mappings.

• Virtual address space may be larger than
physical address space.

• Virtually contiguous memory blocks do not have
to be physically contiguous.
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Virtual To Physical MemoryVirtual To Physical Memory

Mapping (Paging)Mapping (Paging)

Page 1

Page 2

Page 3

Page 24

Page n

Frame 1

Frame 2

Frame n

Virtual Address Space Physical Address Space

• Paging - virtual and physical
memory address spaces are
divided into same size blocks.
– Virtual blocks known as “pages”.

– Physical blocks known as “frames”.

– Virtually contiguous blocks are not
necessarily physically contiguous!

X86 PTE FormatX86 PTE Format

• Virtual to physical mapping information is kept in

page tables in structures called PTE’s.

Reserved

Reserved

Reserved

Global

Reserved (large page if PDE)

Dirty

Accessed

Cache disabled

Write through

Owner

Write
Valid

Page frame # U P Cw Gl L D A Cd Wt O W V

012345678910111231
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The Big PictureThe Big Picture

Physical

Frame

0xFFFFFFFF

0xc0800000

0x80000000
0x7FFFFFFF

0x00000000

Virtual Memory

Application code

Global variables

Per thread stacks

DLLs

Ntoskrnl

HAL

Paged Pool

Nonpaged Pool

Process Page Tables

Virtual Pages

Virtual Pages

Page Table 

Entries

Physical Memory

X86 Virtual AddressX86 Virtual Address

• Virtual addresses form indexes into page tables.

• Page tables may be single or multi-level.

• X86 uses a 2 level page table structure w/
support for 4K and 4MB sized pages.

Page directory index Page table index Byte index

Virtual Page Number

10 bits 10 bits
12 bits

31 0 (LSB)
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X86 Virtual To PhysicalX86 Virtual To Physical

Address TranslationAddress Translation

Page Table

Byte IndexPage Table Index
Physical Memory

Virtual Address

Page Directory Index

Page Directory

KPROCESS

CR3

PFN

PFN

Page

Frame

Physical 

address

(1 per process)

(up to 512 per process)

Page FaultsPage Faults

• Because physical memory may be smaller than
the virtual address space, the OS may move
less recently used pages to disk (the pagefile) to
satisfy current memory demands.

• A page fault occurs on:
– An attempted access to a virtual address whose PTE

is marked not present and whose translation is not
cached in the TLB.

– Memory protection violations.
• User mode code attempting to write to a kernel mode

memory.

• An attempt to write to memory marked as read-only.
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27 (Invalid)

Page Fault PathPage Fault Path

Page Table

Physical MemoryPage Directory

VPN=12, Frame =132 

PRESENT

VPN =12, Frame = 13 

PRESENT

Frame 0 Frame 122 Frame 27 Frame 13 Frame 3

Memory 

Access

Page Fault Handler

Disk (Page File)

Frame 132

VPN=12, Frame=27

FAULT

VPN =12, Frame=27

NOT PRESENT

The Paging PerformanceThe Paging Performance

ProblemProblem
• Virtual memory incurs a steep performance hit!

• 2 level page table scheme like x86:

– Best Case: 3 memory accesses per reference!

 (page dir + page table + offset)

– Worst Case: 3 memory accesses + 2 disk I/O

requests per memory reference!

(page dir + I/O + page table + I/O + offset)

• Solution: Translation Lookaside Buffer (TLB)

– The TLB is a high speed hardware cache of

frequently used virtual to physical mappings (PTE’s).
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Translation Lookaside BufferTranslation Lookaside Buffer

• On memory access, TLB is searched first for the
virtual to physical translation!

• High speed associative memory
– “Hit”  translation was found in the TLB

– “Miss”  translation was not found in the TLB

• X86 Uses Split TLB architecture
– ITLB: holds virtual to physical translations for code

– DTLB: holds virtual to physical translations for data

• Modern TLB’s have extremely high “hit” rates
and seldom incur the performance hit of a page
table walk.

Translation Lookaside BufferTranslation Lookaside Buffer

(TLB)(TLB)

Virtual Page Number = 17

.

.

.

.

Virtual Page 5

Virtual Page 64

Virtual Page 17

Virtual Page 6

Virtual Page 7

Virtual Page 65

Page Frame 100

Invalid

Page Frame 84

Page Frame 100

Page Frame 844

Invalid

Virtual Address
TLB

Associative Memory

(Simultaneous read 

and compare)

tag data

digital self defense



Memory Access PathMemory Access Path

w/ TLB (Hit)w/ TLB (Hit)

P

Memory Access 

(Code, VPN=12)

ITLB

DTLB

Physical Memory

Frame 132Page Table /

Page Dir

27 (Invalid)FAULT27 (Invalid)

Frame 0 Frame 122 Frame 27 Frame 13 Frame 3

Disk (Page File)

Is it a 

code access?

Is it a 

data access?

VPN = 12, Frame = 132

VPN = 12, Frame = 132

Memory Access PathMemory Access Path

(TLB Miss w/ Page Fault)(TLB Miss w/ Page Fault)

Memory Access 

(Code, VPN=25)

ITLB

DTLB

Physical Memory

Frame 132

Page Table /

Page Dir

VPN = 25, Frame = 13

(PRESENT)

Frame 0 Frame 122 Frame 27 Frame 13 Frame 3

Disk (Page File)

Is it a 

code access?

Is it a 

data access?

MISS

VPN = 25, Frame = 13

(NOT PRESENT)
VPN = 25, Frame = 13

FAULT

Page Fault Handler
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Memory Access TypesMemory Access Types

• Basic memory access types:

– Read

– Write

– Execute

• Under IA-32, execute access is implied:

– Read / Execute

– Read / Write / Execute

NX?NX?

(Execute Only Memory)(Execute Only Memory)

• For some applications it is advantageous to be able to
differentiate between read / write and execute accesses.
– Buffer Overflow Protection

• IA-32 does not provide hardware support for execute-
only memory
– PaX  Read / Write / No Execute memory semantics on the IA-

32 with software support

– Side Note: Hardware support for NX (Execute-Only) memory has
been added to some processors including AMD 64 processors,
some AMD sempron processors, IA-64, and Intel Pentium 4.

– Windows XP SP2 and Windows Server 2003 SP1 added OS
software support for NX.
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Hiding Executable CodeHiding Executable Code

• We take an offensive spin on the
defensive PaX technology.

• We want to hide code, therefore we also
want to differentiate between read / write
and execute accesses to the hidden code.

– Read accesses of the code section of a rootkit
driver may indicate presence of a scanner.

– Nearly the inverse of PaX: Software
implementation of Execute / Diverted Read-
Write semantics.

Implementation IssuesImplementation Issues

• We need a way to filter execute and read /

write accesses.

• We need a way to “fake” the read / write

memory accesses when we detect them.

• We need to ensure that performance is not

adversely affected.
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Differentiating BetweenDifferentiating Between

Execute and Read / WriteExecute and Read / Write
• We can trap memory accesses by marking their

PTE’s “non present” and hooking the page fault
handler.

• In the page fault handler, we have access to the
saved instruction pointer and the faulting
address.
– If instruction pointer == faulting address, then it is an

execute access! Otherwise, it is a read/write.

• We also need to differentiate between page
faults due to the memory hook and normal page
faults.
– Pages must be nonpaged memory.

– Pages must be locked down in memory.

Faking Read / Writes ByFaking Read / Writes By

Exploiting The Split TLB (1)Exploiting The Split TLB (1)
• Normal Synchronized ITLB and DTLB translate code and

data memory accesses to the same physical frame.

Memory Access 

(VPN=12)

ITLB

DTLB

Frame 2Page Table /

Page Dir

27 (Invalid)FAULT27 (Invalid)

Is it a 

code access?

Is it a 

data access?

VPN = 12, Frame = 2

VPN = 12, Frame = 2

Frame 8

Frame 52
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Faking Read / Writes ByFaking Read / Writes By

Exploiting The Split TLB (2)Exploiting The Split TLB (2)
• Desynchronized ITLB and DTLB translate code and data

memory accesses to different physical frames.

Memory Access 

(VPN=12)

ITLB

DTLB

Frame 2Page Table /

Page Dir

27 (Invalid)FAULT27 (Invalid)

Is it a 

code access?

Is it a 

data access?

VPN = 12, Frame = 52

VPN = 12, Frame = 2

Frame 8

Frame 52

rootkit code

random garbage

Software TLB ControlSoftware TLB Control

• Reloading cr3 causes all TLB entries except
global entries to be flushed. This typically occurs
on a context switch.

• The invlpg causes a specific TLB entry to be
flushed.

• Executing a data access instruction causes the
DTLB to be loaded with the mapping for the data
page that was accessed.

• Executing a call causes the ITLB to be loaded
with the mapping for the page containing the
code executed in response to the call.

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s



b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

Shadow Walker ComponentsShadow Walker Components

• Memory Hook Engine

– Hook Installation Module

– Custom Page Fault Handler

• Modified FU Rootkit

Memory Hook InstallationMemory Hook Installation

• Install new PF handler (Int 0E).

• Insert page into global hash table of

hooked pages for quick lookup in PF

handler.

• Mark page not present.

• Flush the TLB to ensure that we trap all

subsequent memory accesses in the PF

handler.
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Custom Page Fault HandlerCustom Page Fault Handler

• Primary task is to filter read / write and execute accesses
for hooked pages.
– Passes down faults on unhooked pages to the OS page fault

handler.

– Manually loads ITLB on execute access to hooked page.

– Manually loads DTLB on data access to hooked page.

• Most memory references will be resolved via the TLB
path and will not generate page faults.

• Page faults on hooked pages will occur:
– On the first execute and data accesses to the page.

– On TLB cache line evictions of a hooked mapping.

– On explicit TLB flush (i.e. context switch).

PF Handler PseudocodePF Handler Pseudocode

• Pseudocode for enforcing execute diverted read / write
semantics on kernel pages.

Page Fault Handler:

if( ProcessorMode == USER_MODE )

jmp PassDownToOs

if( FaultingAddress == USER_PAGE )

jmp PassDownToOs

//faulting address is from a hidden page

if( FaultingAddress == HIDDEN_PAGE) 

{ if(FaultingAddress == EIP)
jmp LoadItlb //execute access

else

jmp LoadDtlb

 }

else jmp PassDownToOs

Load Itlb:

ReplaceFrame(PTE.FaultingAddress)

PTE.FaultingAddress == PRESENT

CallIntoHiddenPage //load ITLB

PTE.FaultingAddress == NOT PRESENT

ReplaceFrame(old_PTE.FaultingAddress)

jmp ReturnWithoutPassdownToOs

Load Dtlb

PTE.FaultingAddress == PRESENT

ReadFaultingAddress //load DTLB
PTE.FaultingAddress == NOT PRESENT

jmp ReturnWithoutPassdownToOs
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What About Data HidingWhat About Data Hiding

• Less optimal
– DTLB must be kept empty of hidden page mapping.

– One page fault per data access to hidden page.

• For memory access to go through, data
accesses must be filtered in PF handler and the
DTLB must be loaded w/ the correct mapping.

• Memory hook must maintain control (i.e. DTLB
must be flushed after access).
– Protocol based approach between driver and PF

handler.

– Debugging approach (i.e. single step).

Modified FU RootkitModified FU Rootkit

• Proof of concept rootkit hidden by our memory
hook engine.

• Runs as a system thread and regularly scans
the active process list looking for processes
named _fu_ and unlinks them.

• No dependence on userland initialization.
– No symbolic link

– No functional device

• In memory rootkit
– Could be installed from a kernel exploit to avoid disk

detection.
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Impact On SystemImpact On System

PerformancePerformance
• Modern TLB’s have extremely high “hit” rates.

• Therefore, most translations on our “hidden

pages” will go through the TLB path rather than

the slower page fault path.

• Using the memory hook engine to hide a rootkit

driver’s code has no subjectively noticeable

impact on overall system performance!

Known LimitationsKnown Limitations

• No PAE Support

• No Hyperthreading / Multiprocessor

Support

• Currently hides only 4K sized kernel pages

(i.e. system space / upper 2 GB of the

virtual address space).

digital self defense

b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s



b
l
a

c
k

h
a

t
b

r
ie

f
in

g
s

DetectionDetection

• Non present pages in non paged memory range
are abnormal!

• The PF handler code itself cannot be concealed
using this technique since we cannot mark the
page containing the PF handler non present
(must use polymorphic solution).

• Difficult to conceal IDT hooks (i.e. PF handler).

• Cannot protect against remapping.
– Virtual memory scans are inadequate!

– More advanced scanners should be based upon
remapping of the physical address space.

– Hardware memory scanners.

Yin and YangYin and Yang

• Beyond the offensive rootkit, there are defensive
applications
– IDS, AV, Firewall Drivers

• Rootkits and other malicious software often
compromise security software via in memory
patching.

• Execute / Diverted Read-Write semantics can be
used to provide light weight code integrity.
– Malicious read / write accesses to a security driver’s

code section can be deflected to a separate “shadow”
page frame where they would have no effect!
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