

security-assessment.com Ltd
Level 1 / 5 Nelson Street

PO Box 106-402
Auckland 1001 / New Zealand

Tel: +64 9 302 5093
Fax: +64 9 302 5023

Web: www.security-assessment.com

White Paper

Title: Overview Of SPU-Optimised
Cryptography / “CrackStation”

Prepared by: Nick Breese

 Senior Security Consultant

 Security-Assessment.com

Date: 25th February 2008

26/02/2008 Page 2 of 7

Copyright Security-Assessment.com Ltd 2008

AbstractAbstractAbstractAbstract An implementation of MD5 using vector computing, rather than typical scalar

computing, has yielded incredible gains in calculation time. I have been working

on a project currently dubbed "Crackstation" for the past 6 months to implement

common ciphers and hash functions using vector computing. The current focus

has been on the Cell Broadband Engine ("CBE" / “Cell”) within the PlayStation 3.

Quick tests have confirmed that vector implementations of MD5 using x86 SSE

also increases calculation time. Other vector processing technologies may also be

applicable, but are currently untested.

The focus of this whitepaper is to show how easy it is to start porting an existing

C-based algorithm implementation to a vector equivalent. This is intended to

supplement the BlackHat presentation slides and source code. All information will

be available at http://www.security-assessment.com and mirrored at

http://insecure.io.

Technology Technology Technology Technology

OverviewOverviewOverviewOverview

The SPU processors within the PlayStation 3's CBE are effectively vector

processors with enhanced features. Per-core local storage memory, a high

number of general purpose registers and their self-contained nature make the

SPU processors excellent choices for specific vector-based cryptography

implementations.

Benchmarks have been conducted to assess the potential for vector calculation

within password cracking. While the results are strictly only to be used as a

guideline, they are encouraging. The PlayStation 3 manages to conduct over 1.4

billion MD5 calculations a second.

Introduction To Introduction To Introduction To Introduction To

SIMDSIMDSIMDSIMD

Vector processing is known commonly as Single-Instruction, Multiple Data

(SIMD). Unlike scalar operations which conduct single mathematical calculations

to a single piece of data; SIMD allows a single mathematical operation to be

applied to a data group. This method is not intended to conduct each operation

faster. The concept is to apply the same operation to multiple pieces of data,

which yields in a greater number of results.

Single instruction, single data (scalar / "traditional")

1 + 4 = 4

1 � data, + � instruction

Single instruction, multiple data (vector)

{1, 2, 3, 4} + 4 = {5, 6, 7, 8}

1, 2, 3, 4 � data set, + � single instruction

26/02/2008 Page 3 of 7

Copyright Security-Assessment.com Ltd 2008

Single instruction, multiple data (vector)

{1, 2, 3, 4} + {5, 6, 7, 8} = {6, 8, 10, 12}

1, 2, 3, 4 � data set, + � single instruction, 5, 6, 7, 8 � second data set

Single instruction, single data (scalar / "traditional")

 int a, b, c;

 a = 1;

 b = 2;

 c = a + b;

Single instruction, multiple data (vector)

 vec_int4 vec_a, vec_b, vec_c;

 vec_a = (vec_int4) {1,2,3,4};

 vec_b = (vec_int4) {5,6,7,8};

 vec_c = spu_add(vec_a,vec_b);

// vec_c is now {6, 8, 10, 12}

The above demonstrates the simple concept and implementation of using SIMD.

In the latter example, the vector of individual values is merely replaced with the

values of the multiple MD5 calculations we are performing at one time.

Optimisation Optimisation Optimisation Optimisation

OverviewOverviewOverviewOverview

While there may be exceptions to this rule, it is likely that conducting multiple

calculations in parallel would be the most practical. This is especially true in the

case of MD5 as an avalanche effect occurs. This means that each intermediary

value is dependant on the previous value. Running different parts of the same

md5 calculation in parallel is not possible.

At its core, the MD5 hash function operates on 32bit unsigned integers. Both

SSE2 and the Cell SPU use a 128bit general purpose register file for vector data

groups. This in turn allows for four 32bit concurrent MD5 computation values to

co-exist at the same time. With my implementation, each mathematical calculation

of MD5 is applied against the vector data group, resulting in four separate MD5

calculation streams to be conducted concurrently. Using Linux under the

PlayStation 3 hypervisor allows access to six SPUs in total, giving 24 concurrent

MD5 calculations.

26/02/2008 Page 4 of 7

Copyright Security-Assessment.com Ltd 2008

If your algorithm uses values greater than 32bits in places (i.e. DES), attempt to

figure out a way of breaking them down to smaller chunks. Remember that people

have been using 32bit processors for years, so there is likely an elegant solution

in some freely-available implementation.

Optimisation Optimisation Optimisation Optimisation

DetailsDetailsDetailsDetails

Vector functions are available to a C coder via instrinsics. The vast amount of time

spent writing an SPU accelerated algorithm is spent on simply mapping each

operation (ie. add, subtract, xor, etc.) to an equivalent vector operation using the

appropriate intrinsic. These can be found within IBM’s C/C++ Language

Extensions for Cell Broadband Engine Architecture1 document.

Below are code snippets from equivalent functions found in L. Peter Deutsch’s

md5.c 2 and spu_md5.c.

The repeatedly used “rotate left” function. Negative value of n is required to

correctly conduct the shift using spu_rlmask.

md5.c

#define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32 - (n))))

spu_md5.c

vec_uint4 rotate_left (vec_uint4 * vec_x, unsigned int n) {

 int rshift = 32-n;

 return spu_or(spu_sl(*vec_x,n),spu_rlmask(*vec_x,-

(rshift)));

}

1 http://www-01.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine
2 http://mirror.cs.wisc.edu/pub/mirrors/ghost/packages/md5.tar.gz

26/02/2008 Page 5 of 7

Copyright Security-Assessment.com Ltd 2008

The “F” function used by the first round of MD5 calculations:

md5.c

#define F(x, y, z) (((x) & (y)) | (~(x) & (z)))

spu_md5.c

vec_uint4 f_round_1(vec_uint4 * vec_x, vec_uint4 * vec_y,

vec_uint4 * vec_z)

{

 vec_uint4 vec_f;

 vec_uint4 vec_f1;

 vec_uint4 vec_f2;

 vec_f1 = spu_and(*vec_x,*vec_y);

 vec_uint4 vec_comp_x = spu_nor (*vec_x,vec_null);

 vec_f2 = spu_and (vec_comp_x, *vec_z);

 vec_f = spu_or (vec_f1, vec_f2);

 return(vec_f);

}

//vec_null == vector of null

The first round of MD5 calculations:

md5.c

#define SET(a, b, c, d, k, s, Ti)\

 t = a + F(b,c,d) + X[k] + Ti;\

 a = ROTATE_LEFT(t, s) + b

spu_md5.c

static void set_round_1 (vec_uint4 * vec_a, vec_uint4 * vec_b,

vec_uint4 * vec_c, vec_uint4 * vec_d, vec_uint4 * vec_k,

unsigned int s, vec_uint4 * Ti)

{

 vec_uint4 vec_t;

 vec_t = f_round_1(vec_b, vec_c, vec_d);

 vec_t = spu_add(vec_t,*vec_a);

 vec_t = spu_add(vec_t,*vec_k);

 vec_t = spu_add(vec_t,*Ti);

 vec_t = rotate_left(&vec_t,s);

 vec_t = spu_add(vec_t,*vec_b);

 *vec_a = vec_t;

}

26/02/2008 Page 6 of 7

Copyright Security-Assessment.com Ltd 2008

There is very little expertise needed. Problems can arise when there is not a direct

equivalent intrinsic available, in which case you would have to come up with an

alternative method. One example of such would be the lack of an “spu_not”

intrinsic for the bitwise NOT operation. Performing an spu_eqv or spu_nor

operation against your designated value and a vector of null would accomplish the

same task.

Final SummaryFinal SummaryFinal SummaryFinal Summary Pure vector-based cryptographic implementations can aide certain attacks. The

most obvious would be password cracking as these operations can be run in

parallel quite well. While each individual cryptographic algorithm implementation

needs to be rewritten to take advantage of SIMD optimisation, this document

demonstrates how easy it is.

Calculation time to brute-force a particular cryptographic function is a commonly-

used metric. This time is calculated using the current high-end x86 processors.

Due to their ever-increasing performance and ubiquity, using x86-based

processors has been reasonable. These results suggest that x86 should possibly

not be used as a baseline in the future.

ReferencesReferencesReferencesReferences L. Peter Deutsch’s implementation of md5

http://mirror.cs.wisc.edu/pub/mirrors/ghost/packages/md5.tar.gz

IBM Cell Broadband Engine documentation

http://www-01.ibm.com/chips/techlib/techlib.nsf/products/Cell_Broadband_Engine

Security-Assessment.com

http://www.security-assessment.com

26/02/2008 Page 7 of 7

Copyright Security-Assessment.com Ltd 2008

About SecurityAbout SecurityAbout SecurityAbout Security----

Assessment.com Assessment.com Assessment.com Assessment.com
Security-Assessment.com is Australasia’s leading team of Information Security

consultants specialising in providing high quality Information Security services to

clients throughout the Asia Pacific region. Our clients include some of the largest

globally recognised companies in areas such as finance, telecommunications,

broadcasting, legal and government. Our aim is to provide the very best

independent advice and a high level of technical expertise while creating long and

lasting professional relationships with our clients.

Security-Assessment.com is committed to security research and development,

and its team continues to identify and responsibly publish vulnerabilities in public

and private software vendor's products. Members of the Security-

Assessment.com R&D team are globally recognised through their release of

whitepapers and presentations related to new security research.

Security-Assessment.com is an Endorsed Commonwealth Government of

Australia supplier and sits on the Australian Government Attorney-General's

Department Critical Infrastructure Project panel. We are certified by both Visa and

MasterCard under their Payment Card Industry Data Security Standard Programs.

Copyright Copyright Copyright Copyright

InformationInformationInformationInformation

These articles are free to view in electronic form; however, Security-

Assessment.com and the publications that originally published these articles

maintain their copyrights. You are entitled to copy or republish them or store

them in your computer on the provisions that the document is not changed,

edited, or altered in any form, and if stored on a local system, you must

maintain the original copyrights and credits to the author(s), except where

otherwise explicitly agreed by Security-Assessment.com Ltd.

