
INFORMÁTICA 64

LDAP Injection &
Blind LDAP Injection

In Web Applications

Authors: Chema Alonso, Rodolfo Bordón, Antonio Guzmán y Marta Beltrán

Speakers: Chema Alonso & José Parada Gimeno

Abstract. LDAP Services are a key component in companies. The information stored in them

is used for corporate applications. If one of these applications accepts input from a client and

execute it without first validating it, attackers have the potential to execute their own

queries and thereby extract sensitive information from the LDAP directory. In this paper a

deep analysis of the LDAP injection techniques is presented including Blind attacks.

LDAP Injection & Blind LDAP Injection

Page: 1 of 17

Index

 Section Page

1. Introduction 02

2. LDAP Overview 02

3. Common LDAP environments 03

4. LDAP Injection in Web Applications 04

4.1. AND LDAP Injection 06

4.1.1. Example 1: Access Control Bypass 06

4.1.2. Example 2: Elevation of Privileges 07

4.2. OR LDAP Injection 08

4.2.1. Example 1: Information Disclosure 09

5. Blind LDAP Injection 10

5.1. AND Blind LDAP Injection 10

5.2. OR Blind LDAP Injection 11

5.3. Exploitation Example 11

5.3.1. Discovering Attibutes 11

5.3.2. Booleanization 13

5.3.3. Charset Reduction 15

 6. Securing Applications against

Blind LDAP Injection & LDAP Injection attacks 16

7. References 16

Greetings: RoMaNSoFt, Palako, Raul@Apache, Al Cutter, Mandingo, Chico Maravillas, Alejandro Martín,

Dani Kachakil, Pedro Laguna, Silverhack, Rubén Alonso, David Cervigón, Marty Wilson, Inmaculada Bravo

& S@m Pikesley

LDAP Injection & Blind LDAP Injection

Page: 2 of 17

1. Introduction

The amount of data stored in organizational databases has increased rapidly in recent years

due to the rapid advancement of information technologies. A high percentage of these data is

sensitive, private and critical to the organizations, their clients and partners.

Therefore, databases are usually installed behind internal firewalls, protected with intrusion

detection mechanisms and accessed only by applications. To access a database, users have to

connect to one of these applications and submit queries through them to the database. The

threat to databases arises when these applications do not behave properly and construct these

queries without sanitizing user inputs first.

Over 50% of web application vulnerabilities are input validation related, which allows the

exploitation of code injection techniques. These attacks have proliferated in recent years

causing severe security problems in systems and applications. The SQL injection techniques

are the most widely used and studied but there are other injection techniques associated with

other languages or protocols such as XPath or LDAP.

Preventing the consequences of these kinds of attacks, lies in studying the different code

injection possibilities and in making them public and well known for all programmers and

administrators. In this paper the LDAP injection techniques are analyzed in depth, because all

the web applications based on LDAP trees might be vulnerable to these kinds of attacks.

The key to exploiting injection techniques with LDAP is to manipulate the filters used to search

in the directory services. Using these techniques, an attacker may obtain direct access to the

database underlying an LDAP tree, and thereby to important corporate information.

This can be even more critical because the security of many applications and services relies on

single sign-on environments based on LDAP directories.

Although the vulnerabilities that lead to these consequences are easy to understand and fix,

they persist because of the lack of information about these attacks and their effects. Though

previous references to the exploitation of this kind of vulnerability exist the presented

techniques don´t apply to the vast majority of modern LDAP service implementations. The

main contribution of this paper is the presentation and deep analysis of new LDAP injection

techniques which can be used to exploit these vulnerabilities.

This paper is organized as follows: sections 2 and 3 explain the LDAP fundamentals needed to

understand the techniques presented in the following sections. Section 4 presents the two

typical environments where LDAP injection techniques can be used and exemplify these

techniques with illustrative cases. Section 5 describes how BLIND LDAP Injection attacks can be

done with more examples. Finally, in Section 6, some recommendations for securing systems

against this kind of attack are given.

2. LDAP Overview

The Lightweight Directory Access Protocol is a protocol for querying and modifying directory

services running over TCP/IP. The most widely used implementations of LDAP services are

Microsoft ADAM (Active Directory Application Mode) and OpenLDAP.

LDAP Injection & Blind LDAP Injection

Page: 3 of 17

LDAP directory services are software applications that store and organize information sharing

certain common attributes; the information is structured based on a tree of directory entries,

and the server provides powerful browsing and search capabilities, etcetera. LDAP is object-

oriented, therefore every entry in an LDAP directory services is an instance of an object and

must correspond to the rules fixed for the attributes of that object.

Due to the hierarchical nature of LDAP directory services read-based queries are optimized to

the detriment of write-based queries.

LDAP is also based on the client/server model. The most frequent operation is to search for

directory entries using filters. Clients send queries to the server and the server responds with

the directory entries matching these filters.

LDAP filters are defined in the RFC 4515. The structure of these filters can be summarized as:

Filter = (filtercomp)

Filtercomp = and / or / not / item

And = & filterlist

Or = |filterlist

Not = ! filter

Filterlist = 1*filter

Item= simple / present / substring

Simple = attr filtertype assertionvalue

Filtertype = ”=” / ” ~ =”/ ”>=” / ”<=”

Present = attr = *

Substring = attr ”=” [initial] * [final]

Initial = assertionvalue

Final = assertionvalue

All filters must be in brackets, only a reduced set of logical (AND, OR and NOT) and relational

(=,>=,<=,~=) operators are available to construct them. The special character “*” can be used

to replace one or more characters in the construction of the filters.

Apart from being logic operators, RFC 4256 allows the use of the following standalone symbols

as two special constants:

- (&) -> Absolute TRUE

- (|) -> Absolute FALSE

3. Common LDAP environments

LDAP services are a key component for the daily operation in many companies and institutions.

Directory Services such as Microsoft Active Directory, Novell E-Directory and RedHat Directory

Services are based on the LDAP protocol. But there are other applications and services taking

advantage of the LDAP services.

These applications and services used to require different directories (with separate

authentication) to work. For example, a directory was required for the domain, a separate

directory for mailboxes and distribution lists, and more directories for remote access,

databases or web applications. New directories based on LDAP services are multi-purpose,

LDAP Injection & Blind LDAP Injection

Page: 4 of 17

working as centralized information repositories for user authentication and enabling single

sign-on environments.

This new scenario increases the productivity by reducing the administration complexity and by

improving security and fault tolerance. In almost every environment, the applications based on

LDAP services use the directory for one of the following purposes:

– Access control (user/password pair verification, user certificates management).

– Privilege management.

– Resource management.

Due to the importance of the LDAP services for the corporate networks, the LDAP servers are

usually placed in the backend with the rest of the database servers. Figure 1 shows the typical

scenario deployed for corporate networks, and it is important to keep this scenario in mind in

order to understand the implications of the injection techniques exposed in following sections.

4. LDAP Injection in Web Applications

LDAP injection attacks are based on similar techniques to SQL injection attacks. Therefore, the

underlying concept is to take advantage of the parameters introduced by the user to generate

the LDAP query. A secure Web application should sanitize the parameters introduced by the

user before constructing and sending the query to the server. In a vulnerable environment

these parameters are not properly filtered and the attacker can inject malicious code.

Fig. 1. Typical scenario for an LDAP-based Web application

Taking into consideration the structure of the LDAP filters explained in section 2 and the

implementations of the most widely used LDAP: ADAM and OpenLDAP, the following

conclusions can be drawn about the code injection. (The following filters are crafted using as

value a non sanitized input from the user):

LDAP Injection & Blind LDAP Injection

Page: 5 of 17

– (attribute=value): If the filter used to construct the query lacks a logic operator (OR

or AND), an injection like ”value)(injected_filter” will result in two filters:

(attribute=value)(injected_filter). In the OpenLDAP implementations the second filter

will be ignored, only the first one being executed. In ADAM, a query with two filters

isn´t allowed. Therefore, the injection is useless.

- (|(attribute=value)(second_filter)) or (&(attribute=value)(second_filter)): If the

filter used to construct the query has a logic operator (OR or AND), an injection like

“value)(injected_filter)” will result in the following filter:

(&(attribute=value)(injected_filter)) (second_filter)). Though the filter is not even

syntactically correct, OpenLDAP will start processing it left to right ignoring any

character after the first filter is closed. Some LDAP Client web components will ignore

the second filer, sending to ADAM and OpenLDAP only the first complete one,

therefore allowing the injection.

Some application frameworks will check the filter for correctness before sending it to

the LDAP server. Should this be the case, the filter has to be syntactically correct,

which can be achieved with an injection like:

 “value)(injected_filter))(&(1=0” .This will result in two different filters, the second

being ignored: (&(attribute=value)(injected_filter))(&(1=0)(second_filter)).

As the second filter is going to be ignored by the LDAP Server, some components won´t

allow an LDAP query with two filters. In these cases a special injection must be crafted

in order to obtain a single-filter LDAP query. An injection like: “value)(injected_filter”

will result in the following filter: (&(attribute=value)(injected_filter)(second_filter)).

The typical test to know if an application is vulnerable to code injection consists of sending to

the server a query that generates an invalid input. Therefore, if the server returns an error

message, it is clear for the attacker that the server has executed his query and that he can

exploit the code injection techniques. Taking into account the previous discussion, two kinds of

environments can be distinguished: AND injection environments and OR injection

environments.

Fig. 2. LDAP injection

LDAP Injection & Blind LDAP Injection

Page: 6 of 17

4.1. AND LDAP Injection

In this case the application constructs the normal query to search in the LDAP directory with

the “&” operator and one or more parameters introduced by the user. For example:

(&(parameter1=value1)(parameter2=value2))

Where value1 and value2 are the values used to perform the search in the LDAP directory. The

attacker can inject code, maintaining a correct filter construction but using the query to

achieve his own objectives.

4.1.1. Example 1: Access Control Bypass

A login page has two text box fields for entering user name and password (figure 3). Uname

and Pwd are the user inputs for USER and PASWORD. To verify the existence of the

user/password pair supplied by a client, an LDAP search filter is constructed and sent to the

LDAP server:

(&(USER=Uname)(PASSWORD=Pwd))

If an attacker enters a valid username, for example, slisberger, and injects the appropriate

sequence following this name, the password check can be bypassed.

Making Uname=slisberger)(&)) and introducing any string as the Pwd value, the following

query is constructed and sent to the server:

(& (USER=slisberger)(&))(PASSWORD=Pwd))

Fig. 3. Login page with LDAP injection

Only the first filter is processed by the LDAP server, that is, only the query

(&(USER=slisberger)(&)) is processed. This query is always true, so the attacker gains access to

the system without having a valid password.

LDAP Injection & Blind LDAP Injection

Page: 7 of 17

Fig. 4. Home page shown to the attacker after avoiding the access control

4.1.2. Example 2: Elevation of Privileges

For example, suppose that the following query lists all the documents visible for the users with

a low security level:

(&(directory=documents)(security_level=low))

Fig. 5. Low security level documents.

Where “documents” is the user entry for the first parameter and low is the value for the

second. If the attacker wants to list all the documents visible for the high security level, he can

use an injection like “documents)(security_level=*))(&(directory=documents” resulting in the

following filter:

(&(directory=documents)(security_level=*))(&(directory=documents)(security_level=low))

LDAP Injection & Blind LDAP Injection

Page: 8 of 17

Fig. 6. All security levels documents

The LDAP server will only process the first filter ignoring the second one, therefore, only the

following query will be processed: (&(directory=documents)(security level=*)), while (&

(directory=documents)(security level=low)) will be ignored.

As a result, a list with all the documents available for the users with all security levels will be

displayed for the attacker although he doesn’t have privileges to see them.

4.2. OR LDAP Injection

In this case the application constructs the normal query to search in the LDAP directory with

the “|” operator and one or more parameters introduced by the user. For example:

(|(parameter1=value1)(parameter2=value2))

Where value1 and value2 are the values used to perform the search in the LDAP directory. The

attacker can inject code, maintaining a correct filter construction but using the query to

achieve his own objectives.

LDAP Injection & Blind LDAP Injection

Page: 9 of 17

4.2.1. Example 1: Information Disclosure

Suppose a resources explorer allows users to know the resources available in the system

(printers, scanners, storage systems, etc…). This is a typical OR LDAP Injection case, because

the query used to show the available resources is:

(|(type=Rsc1)(type=Rsc2))

Rsc1 and Rsc2 represent the different kinds of resources in the system. In figure 7,

Rsc1=printer and Rsc2=scanner to show all the available printers and scanners in the system.

Fig. 7. Resources available to the user from the Resources Consoles Management

If the attacker enters Rsc1=printer)(uid=*), the following query is sent to the server:

(|(type=printer)(uid=*))(type=scanner))

The LDAP server responds with all the printer and user objects.

Fig. 8. Information available to the attacker after the LDAP injection

LDAP Injection & Blind LDAP Injection

Page: 10 of 17

5. Blind LDAP Injection

Suppose that an attacker can infer from the server responses, although the application does

not show error messages, the code injected in the LDAP filter generates a valid response (true

result) or an error (false result). The attacker could use this behavior to ask the server true or

false questions. These types of attacks are named “Blind Attacks”. Blind LDAP Injection attacks

are slower than classic ones but they can be easily implemented, since they are based on

binary logic, and they let the attacker extract information from the LDAP Directory.

5.1. AND Blind LDAP Injection

Suppose a web application wants to list all available Epson printers from an LDP directory

where error messages are not returned. The application sends the following LDAP search filter:

(& (objectClass=printer)(type=Epson*))

With this query, if there are any Epson printers available, icons are shown to the client,

otherwise no icon is shown. If the attacker performs a Blind LDAP injection attack injecting

“*)(objectClass=*))(& (objectClass=void“, the web application will construct the following LDAP

query:

(& (objectClass=*)(objectClass=*))(&(objectClass=void)(type=Epson*))

Only the first complete LDAP filter will process:

(&(objectClass=*)(objectClass=*))

As a result, the printer icon must be shown to the client, because this query always obtains

results: the filter objectClass=* always returns an object. When an icon is shown the response

is true, otherwise the response is false.

From this point, it is easy to use blind injection techniques. For example, the following

injections can be constructed:

(&(objectClass=*)(objectClass=users))(&(objectClass=foo)(type=Epson*))

(&(objectClass=*)(objectClass=resources))(&(objectClass=foo)(type=Epson*))

This set of code injections allows the attacker to infer the different objectClass values possible

in the LDAP directory service. When the response web page contains at least one printer icon,

the objectClass value exists (TRUE), on the other hand the objectClass value does not exist or

there is no access to it, and so no icon, the objectclass value does not exist(FALSE).

Blind LDAP injection techniques allow the attacker access to all information using TRUE/FALSE

questions.

LDAP Injection & Blind LDAP Injection

Page: 11 of 17

5.2. OR Blind LDAP Injection

In this case, the logic used to infer the desired information is the opposite, due to the presence

of the OR logical operator. Following with the same example, the injection in an OR

environment should be:

(|(objectClass=void)(objectClass=void))(&(objectClass=void)(type=Epson*))

This LDAP query obtains no objects from the LDAP directory service, therefore the printer icon

is not shown to the client (FALSE). If any icon is shown in the response web page then, it is a

TRUE response. Thus, an attacker could inject the following LDAP filters for gathering

information:

(|(objectClass=void)(objectClass=users))(&(objectClass=void)(type=Epson*))

(|(objectClass=void)(objectClass=resources))(&(objectClass=void)(type=Epson*))

5.3. Exploitation example

In this section, an LDAP environment has been implemented to show the use of the injection

techniques explained above and also to describe the possible effects of the exploitation of

these vulnerabilities and the important impact of these attacks in current systems security.

In this example the page printerstatus.php receives a parameter idprinter to construct the

following LDAP search filter:

(&(idprinter=Value1)(objectclass=printer))

5.3.1. Discovering Attributes

Blind LDAP Injection techniques can be used to obtain sensitive information from the LDAP

directory services by taking advantage of the AND operator at the beginning of the LDAP

search filter built into the web application. For example, given the attributes defined for the

printer object shown in figure 9 and the response web page of this LDAP query in figure 10 for

Value1=HPLaserJet2100,

Fig. 9. Attributes defined for the printer object

LDAP Injection & Blind LDAP Injection

Page: 12 of 17

Fig. 10. Normal behavior of the application

an attribute discovering attack can be performed by making these following LDAP injections:

 (&(idprinter=HPLaserJet2100)(ipaddress=*))(objectclass=printer))

Fig 11: Response web page when the attribute does not exist

(& (idprinter=HPLaserJet2100)(department=*))(objectclass=printer))

Fig 12: Response web page when the attribute exists

LDAP Injection & Blind LDAP Injection

Page: 13 of 17

Obviously, the attacker can infer from these results which attributes exist and which do not. In

the first case, the information about the printer is not given by the application because the

attribute ipaddress does not exist or it is not accessible (FALSE). On the other hand, in the

second case, the response web page shows the printer status and therefore, the attribute

department exists in the LDAP directory and it is possible access to it.

Furthermore, with blind LDAP injection attacks the values of some of these attributes can be

obtained. For example, suppose that the attacker wants to know the value of the department

attribute: he can use booleanization and charset reduction techniques, explained in the next

sections, to infer it.

5.3.2. Booleanization

An attacker can extract the value from attributes using alphabetic or numeric search. The crux

of the idea is to transform a complex value (e.g. a string or a date) into a list of TRUE/FALSE

questions. This mechanism, usually called booleanization, is summarized in figure 13 and can

be applied in many different ways.

Fig. 13. Booleanization

Suppose that the attacker wants to know the value of the department attribute. The process

would be the following:

(& (idprinter=HPLaserJet2100)(department=a*))(objectclass=printer))

Fig. 14. FALSE. Value doesn´t start with ‘a’

LDAP Injection & Blind LDAP Injection

Page: 14 of 17

(&(idprinter=HPLaserJet2100)(department=f*))(objectclass=printer))

Fig. 15. TRUE. Value starts with ‘f’

(&(idprinter=HPLaserJet2100)(department=fa*))(objectclass=printer))

Fig. 16. FALSE. Value doesn´t start with ‘fa’

(&(idprinter=HPLaserJet2100)(department=fi*))(objectclass=printer))

Fig. 17. TRUE. Value starts with ‘fi’

LDAP Injection & Blind LDAP Injection

Page: 15 of 17

As shown in figure 9, the department value in this example is financial. The first try with the

character ‘a’ does not obtain any printer information (figure 14) therefore, the first character

is not an ’a’. After testing with the rest of the characters, the only one that obtains the normal

behavior from the application is ’f’ (figure 15). Regarding the second character, the only one

that results in the normal operation of the application is ’i’ (figure 17) and so on. Following the

process, the department value can be obtained.

This algorithm can be also used for numeric values. In order to perform this, the

booleanization process should use ‘greater than or equal to’ (>=) and ‘less than or equal to’

(<=) operators.

5.3.3 Charset Reduction

An attacker can use charset reduction to decrease the number of requests needed for obtain

the information. In order to accomplish this, he uses wildcards to test if the given character is

present *anywhere* in the value, e.g.:

(&(idprinter=HPLaserJet2100)(department=*b*))(objectclass=printer))

Fig. 18. FALSE. Character ’b’ is not in the department value

(& (idprinter=HPLaserJet2100)(department=*n*))(objectclass=printer))

Fig. 19. TRUE. Character ’n’ is in the department value

LDAP Injection & Blind LDAP Injection

Page: 16 of 17

Figure 18 shows the response web page when the character ’b’ is tested: no results are sent

from the LDAP directory service so no letter ‘b’ is present, but in figure 19 a normal response

web page is shown, meaning that the character ’n’ is in the department value.

Through this process, the set of characters comprising the department value can be obtained.

Once the charset reduction is done, only the characters discovered will be used in the

booleanization process, thereby decreasing the number of requests needed.

6. Securing Applications against Blind LDAP Injection & LDAP Injection

attacks

The attacks presented in the previous sections are performed on the application layer,

therefore firewalls and intrusion detection mechanisms on the network layer have no effect on

preventing any of these LDAP injections. However, general security recommendations for LDAP

directory services can mitigate these vulnerabilities or minimize their impact by applying

minimum exposure point and minimum privileges principles.

Mechanisms used to prevent code injection techniques include defensive programming,

sophisticated input validation, dynamic checks and static source code analysis. The work on

mitigating LDAP injections must involve similar techniques.

It has been demonstrated in the previous sections that LDAP injection attacks are performed

by including special characters in the parameters sent from the client to the server. It is clear

therefore that it is very important to check and sanitize the variables used to construct the

LDAP filters before sending the queries to the server.

In conclusion, we see that parentheses, asterisks, logical (AND “&”, OR “|” and NOT “!”) and

relational (=,>=,<=,~=) operators must be filtered at the application layer.

Whenever possible, values used to construct the LDAP search filter must be checked against a

list of valid values in the Application Layer before sending the query to the LDAP server.

7. References

- “LDAP Injection: Are your Web applications Vulnerable?”, Sacha Faust. SPI Dynamics

URL: http://www.spidynamics.com/support/whitepapers/LDAPinjection.pdf

URL2: http://www.networkdls.com/Articles/LDAPinjection.pdf

- “Blind SQL Injection Automation Techniques”, Cameron Hotchkies, BlackHat Conferences 2004.

URL:https://www.blackhat.com/presentations/bh-usa-04/bh-us-04-hotchkies/bh-us-04-

hotchkies.pdf

- “Blind XPath Injection”, Amit Klein. SANCTUM.

URL:http://www.packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf

- “Lightweight Directory Access Protocol (LDAP): The Protocol”, J. Sermersheim, RFC 4511.

URL: http://www.rfc-editor.org/rfc/rfc4511.txt

- “LDAP Search Filters”, M. Smith & T. Howes, RFC 4515.

URL: http://www.rfc-editor.org/rfc/rfc4515.txt

- "Lightweight Directory Access Protocol (LDAP): Technical Specification Road Map”, K. Zeilenga,

Networking Working Group, LDAP Foundation, RFC, The OpenGroup.

URL: http://www.rfc-editor.org/rfc/rfc4510.txt

LDAP Injection & Blind LDAP Injection

Page: 17 of 17

- “Understanding LDAP - Design and Implementation”, Steven Tuttle, Ami Ehlenberger,

Ramakrishna Gorthi, Jay Leiserson, Richard Macbeth, Nathan Owen, Sunil Ranahandola,

Michael Storrs & Chunhui Yang, IBM.

URL: http://www.redbooks.ibm.com/redbooks/pdfs/sg244986.pdf

- “OpenLDAP admin Guide”, OpenLDAP.org.

URL: http://www.openldap.org/doc/admin23/

- “Microsoft Active Directory Technologies”, Microsoft Corporation.

URL:http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/d

efault.mspx

- “Novell E-Directory”, Novell Corporation.

URL: http://www.novell.com/products/edirectory/

- “RedHat Directory Services. RedHat Deployment Guide”, RedHat.

URL: http://www.redhat.com/docs/manuals/dir-server/deploy/7.1/intro.html

- Single Sign-On”, The OpenGroup.

URL: http://www.opengroup.org/security/sso/

- "Oracle Internet Directory: Documentation”,Oracle.

URL: http://www.oracle.com/technology/documentation/oid.html

- “Time-Based Blind SQL Injection using heavy queries”, Chema Alonso, Daniel Kachakil, Rodolfo

Bordón y Antonio Guzmán.

URL: http://www.microsoft.com/technet/community/columns/secmvp/sv0907.mspx

Contact information:

- Chema Alonso

chema@informatica64.com

http://elladodelmal.blogspot.com

