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This document provides an overview of two emulation-based software protection schemes which pro-
vide protection from reverse code engineering (RCE) and software exploitation using encrypted code
execution and page-granularity code signing, respectively. The two protection mechanisms execute
within trusted emulators while remaining out-of-band of untrusted systems being emulated. The
integrity and reliability of the protection mechanisms depend upon attackers remaining sandboxed
within the emulated environments. The three sections below provide an overview of emulation
sandboxing, emulation-based encrypted code execution and emulation-based page granularity code
signing.

1 Emulation Sandboxing

1.1 Problem Statement

Kernel malware is able to modify (attack) kernel protection mechanisms.

1.2 Approach

This protection scheme assumes it is more difficult to break out1 of an emulation-based sandbox
than break out of user-mode (Ring 3) to kernel-mode (Ring 0). Given the case, protection mecha-
nisms implemented out-of-band of an emulated environment are less frequent to attack than kernel
protection mechanisms. The following describes the emulation sandbox model.

1. Host OS copies Guest OS instructions from Guest OS memory into Host OS memory. (This
step is needed for the protection mechanisms in the following sections.)

2. Guest OS instructions are translated (or interpreted) to a set of Host OS instructions. When
this set of translated Host OS instructions execute the state of Guest OS memory and registers
is modified such that it appears as if the original Guest OS instructions had been executed.

3. The translation process ensures Guest OS instructions read and write Guest OS memory
exculsively. Host OS memory is inaccessible by Guest OS instructions and the translated

1Breaking out of an emulation-based sandbox refers to reading, writing or executing memory not allocated for the
emulated environment.
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set of Host OS instructions can not read or write Host OS memory.2 As a result, the set of
translated instructions will never be self-reading. The Guest OS instructions sandbox is the
restricted memory space.

Figure 1: Basic Emulator Sandbox

2 Emulation-based Encrypted Code Execution

2.1 Problem Statement

Reverse Code Engineering (RCE) uncovers the internal workings of a program. It is used during
vulnerability and intellectual property (IP) discovery. To protect from RCE program code may
have anti-disassembly, anti-debugging, and obfuscation techniques incorporated. These techniques
slow the process of RCE, however, once defeated protected code is still comprehensible. As an
alternative, code may be encrypted. While encryption provides static code protection, encrypted
code must be decrypted before execution.

2.2 Approach

This protection scheme keeps code encrypted within the emulated environment during execution.
Decryption routines and secret keys remain out-of-band of the emulated environment.

1. Host OS copies encrypted Guest OS instructions from Guest OS memory into Host OS mem-
ory. The encrypted Guest OS instructions are decrypted in Host OS memory. The decrypted
instructions always remain out-of-band of the Guest OS and are not accessible by Guest OS
instructions.

2Given a properly implemented emulator with no design or implementation errors.
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2. Decrypted Guest OS instructions are translated (or interpreted) to a set of Host OS instruc-
tions. When this set of translated Host OS instructions execute the state of Guest OS memory
and registers is modified such that it appears as if the original Guest OS instructions had been
executed.

3. The translation process ensures Guest OS instructions never read decrypted Guest OS in-
structions. The encrypted instructions are decrypted in Host OS memory using Host OS
routines. Since the emulation sandbox ensures Host OS memory is inaccessible by Guest
OS instructions, through emulation sandboxing, the decrypted instructions and decryption
routines remain out-of-band and thus less frequent to attack.

Figure 2: Encrypted Code Execution

2.3 Encrypted Code Execution using SecureQEMU

Our implementation of this protection scheme is called SecureQEMU and is based on a modified
Quick Emulator [2]. Figure 3 shows Windows Notepad after encrypted using SecureQEMU. Notice
how Notepad’s encrypted instructions, shown in IDA, is exactly the same as the encrypted instruc-
tions shown in OllyDbg and WinDbg (arbitrary of privilege level). These instructions will never
show decrypted in the debugger (or anywhere in the Guest OS’s memory), even when the instruc-
tions are executing. Furthermore, the encrypted executable does not contain decryption routines
and does not contain the key needed to decrypt the instructions.3

3Unlike other encryption-based software protections, SecureQEMU does not obfuscate the decryption process or
use contextual keying. Decryption routines and keys remain out-of-band.

3



Figure 3: Notepad Remaining Encrypted During Execution

3 Emulation-based Page Granularity Code Signing

3.1 Problem Statement

Software exploitation is a process that leverages design and implementation errors (i.e. buffer over-
lows, input-driven format strings, integer overflows, race conditions, etc.) to cause unintended
behavior which may result in security policy violations. Traditional exploitation protection mecha-
nisms (i.e. stack canaries, variable reordering, shadow arguments, SafeSEH, NX pages, link-pointer
sanity checking, pointer encoding, heap cookies, ASLR, etc.) provide a blacklist approach to soft-
ware protection. Specially crafted exploit payloads bypass these protection mechanisms.

3.2 Approach

This protection scheme provides a whitelist approach to software protection by executing signed
code exclusively. Unsigned malicious code (exploits, backdoors, rootkits, etc.) remain unexecuted,
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therefore, protecting the system.

1. Host OS copies Guest OS instructions and Hash Message Authentication Code’s (HMAC) (or
digital signatures) of Guest OS instructions from Guest OS memory into Host OS memory.

2. HMACs of Guest OS instructions are recomputed using a secret key in Host OS memory.
The secret key remains in Host OS memory and is never accessible by Guest OS instructions.
Guest OS instructions with valid HMACs are translated (or interpreted) to a set of Host OS
instructions. This set of Host OS instructions is executed as before.

3. Guest OS instructions with invalid HMACs remain untranslated and therefore unexecuted.
Malicious code (unless signed using the secret key) will remain unexecuted, thus protecting
the system.

Figure 4: Page Granularity Code Signing
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