Emulation-based Software Protection

William Kimball (wkimball@afit.edu)

Black Hat DC 2009

This document provides an overview of two emulation-based software protection schemes which pro-
vide protection from reverse code engineering (RCE) and software exploitation using encrypted code
execution and page-granularity code signing, respectively. The two protection mechanisms execute
within trusted emulators while remaining out-of-band of untrusted systems being emulated. The
integrity and reliability of the protection mechanisms depend upon attackers remaining sandboxed
within the emulated environments. The three sections below provide an overview of emulation
sandboxing, emulation-based encrypted code execution and emulation-based page granularity code
signing.

1 Emulation Sandboxing

1.1 Problem Statement

Kernel malware is able to modify (attack) kernel protection mechanisms.

1.2 Approach

This protection scheme assumes it is more difficult to break out' of an emulation-based sandbox
than break out of user-mode (Ring 3) to kernel-mode (Ring 0). Given the case, protection mecha-
nisms implemented out-of-band of an emulated environment are less frequent to attack than kernel
protection mechanisms. The following describes the emulation sandbox model.

1. Host OS copies Guest OS instructions from Guest OS memory into Host OS memory. (This
step is needed for the protection mechanisms in the following sections.)

2. Guest OS instructions are translated (or interpreted) to a set of Host OS instructions. When
this set of translated Host OS instructions execute the state of Guest OS memory and registers
is modified such that it appears as if the original Guest OS instructions had been executed.

3. The translation process ensures Guest OS instructions read and write Guest OS memory
exculsively. Host OS memory is inaccessible by Guest OS instructions and the translated

IBreaking out of an emulation-based sandbox refers to reading, writing or executing memory not allocated for the
emulated environment.

set of Host OS instructions can not read or write Host OS memory.? As a result, the set of
translated instructions will never be self-reading. The Guest OS instructions sandbox is the
restricted memory space.

Guest OS Memory (Sandbox)
Guest OS

Instructions

Host OS Memory o

Guest OS Instructions
° Translated Guest OS Instructions

Figure 1: Basic Emulator Sandbox

2 Emulation-based Encrypted Code Execution

2.1 Problem Statement

Reverse Code Engineering (RCE) uncovers the internal workings of a program. It is used during
vulnerability and intellectual property (IP) discovery. To protect from RCE program code may
have anti-disassembly, anti-debugging, and obfuscation techniques incorporated. These techniques
slow the process of RCE, however, once defeated protected code is still comprehensible. As an
alternative, code may be encrypted. While encryption provides static code protection, encrypted
code must be decrypted before execution.

2.2 Approach

This protection scheme keeps code encrypted within the emulated environment during execution.
Decryption routines and secret keys remain out-of-band of the emulated environment.

1. Host OS copies encrypted Guest OS instructions from Guest OS memory into Host OS mem-
ory. The encrypted Guest OS instructions are decrypted in Host OS memory. The decrypted
instructions always remain out-of-band of the Guest OS and are not accessible by Guest OS
instructions.

2Given a properly implemented emulator with no design or implementation errors.

2. Decrypted Guest OS instructions are translated (or interpreted) to a set of Host OS instruc-
tions. When this set of translated Host OS instructions execute the state of Guest OS memory
and registers is modified such that it appears as if the original Guest OS instructions had been
executed.

3. The translation process ensures Guest OS instructions never read decrypted Guest OS in-
structions. The encrypted instructions are decrypted in Host OS memory using Host OS
routines. Since the emulation sandbox ensures Host OS memory is inaccessible by Guest
OS instructions, through emulation sandboxing, the decrypted instructions and decryption
routines remain out-of-band and thus less frequent to attack.

Untrusted Guest OS Memory

Encrypted Guest

OS Instructions

Trusted Host OS Memory

Encrypted Guest OS Instructions
Secret Key o

o c Decrypted Guest OS Instructions

Translated Guest OS Instructions

Figure 2: Encrypted Code Execution

2.3 Encrypted Code Execution using SecureQEMU

Our implementation of this protection scheme is called SecureQEMU and is based on a modified
Quick Emulator [2]. Figure 3 shows Windows Notepad after encrypted using SecureQEMU. Notice
how Notepad’s encrypted instructions, shown in IDA, is exactly the same as the encrypted instruc-
tions shown in OllyDbg and WinDbg (arbitrary of privilege level). These instructions will never
show decrypted in the debugger (or anywhere in the Guest OS’s memory), even when the instruc-
tions are executing. Furthermore, the encrypted executable does not contain decryption routines
and does not contain the key needed to decrypt the instructions.?

3Unlike other encryption-based software protections, SecureQEMU does not obfuscate the decryption process or
use contextual keying. Decryption routines and keys remain out-of-band.

OllyDbg - notepad-encrypted.exe - [[PU - main thread] _[ofx]

[€] Fie view bebug Plugns Options Window Hel =15 x| Fle Edit Jump Search View Debugger Options Windows Help
Sl x] wn] sl BTl o [l K[BIR[[ST | SR -~ [HB@K[a1 = S ol e =
BiaErII0] 52 FUSH EDR <[reaizrers = ~ =
e T EEE T IR EEE
100725 | £128 ABDIOT2F b ROR DWORD PTR DS: [EAX+2FDPDIAG], 60 snifs sonsvant | or
. Ecx pazes g
ioaron| Go sossee || ENTER gase. o6 Lot Bem|memy v -=Nx||-0-vSHK=- ¢ -
i0ATSRA| BB SFICEEZS | | CALL 292BEFEE pd e =
el | - i | .
w2 nknown senmar | oo oacr =
Ev &5 oUT 55, ER 126 oorvand 10| o oose] DA Views | (5] Her View | 5 Exparts | B3 Imports | N Names | i Functions
536 L0S EST,FUGRD PTR [S: [ES11 Moditication ¢ |onp oeaje
ioeTsEs| 14 o8 RoC AL, 28
©10873EE| 6BA1 BO138@D4 Pi IMUL ESP,DWORD PTR DS: [ECH+D4BR13BDI, € EIP 7G50E 3
B & T A text:01007398 ade edi, ebp
1067505 E4 EB IH AL0EB 1A comnand Bl text: 61067300 xor cs:[eax], eax
aoerecs| %8 AT g e e text:B8186739D ; START OF FUNCTION CHUNK FOR start
o PUSH DS 21 D5 @ text:0100739D
émmm e 58 F5 o text:01007390 _WinMainCRTStaniup: s—CODE _XOCE:
LT To &5 :
e T n textia1007e00 push —edx
cre7aco| 24 A9 BND AL, @AY i :
Biderac| 3216 OR OC,BYTE PTR 081 CEST] text:0100739F ror duord ptr [eax+2FD7DAAOK], 6Dh
o 70 56 JGE SHORT @166742F EFL oasge: text: 81067306 enter OFFFFB348h, 26h
coge EFezzzs7 | |LDS EOT, FUORD PR DS:(ESTesrazszer] [Hodiitarion ¢ |oro Loy text: 01007300 call near ptr EESEEEEEN
arE ROC AL, OFS text:0100730F or eax, OCDZLFDDFh
ey {EE SHORT Aleprang text:01073AF ; END OF FUNETJON CHUNK FOR start
10 Fasoones | |SEB ERESDASORS ekt B1BOSAE
ioaTeEz| 1268 ROC B, BL :
il e T text: 01007384 dd OCSSSE7FER, 6B2B1436h
GHOATAES| B5BP PA9AATEY | | TEST DWORD PTR 0S: [EDI+B9A7987A1,EST text:010673BC db Bath
aloaToEE| 42 1 text 01007380 byte 1ph73ep | ab oBon : CODE XREF:
aneTIEC| 6887 12 49 UL EDX, DUORD FTR DSt (EDI+121, 43 text:010673BE ;]
a10a7eFe| 9 LAHF L] / ¥
Radress | Hen dine ; 704512 Total memory allocated =
| Loading 10F modpfle c:\Frogram Files\IDa Free\pracsipc.ws2 for processor metapc v
Thiead 00000248 teiminated, et code Al ide Iogfn [Dski 3B 00006790 0100739D; starti_WinHlainCRTStartup %
&7 Lotal kernel - WinDbg:5.9.0003.113 X865 untitled . Notepad _olx}

File Edt View Debug Window Help e Edt, rmak View Help
@] =02 GBS A BTG 0| o / This 15 an example of notepad.exe running encrypted. =]
FEBEREEDEE|E G A

|1m Pro shows notepad.exe 1s encrypred on disk (static). |

G11ybhy shows notepad.exe 15 encrypted while user level
1kd> |process 0 0 notepad-encrypted =ae - Hebugging (runtime encryption).
PROCESS 8998dch8 Sessionld: 1 Cid: 053c Peb: 7ffde000 ParentC
ase: 1a70c000 ObjectTable: =1d272b0 HondleCount: 17
Thepe: notenatosnErentad S winphg shows that notepad.exe is encrypted while kernel
T Hbuging ranEe Encrybel oY
1kd> Ivtop 1a?0c 0100739d
Fdi 4 Pti 7
01007394 1a4fd000 pEn(ladfd) /
1kd> up 1ad£d33d
1a4£d39d 52 push edn /
1adfd3de 9f lahf
1a4£d39f c188a0d1d72£6d | ror duord ptr [=ax+2FD?D1A0h], 6Dh
1adfdiaé c843832¢ enter 8348h,2€h
1adfddaa =83f1c2h28 call 427aefee
ladfddaf 0ddffd2ded or eax, 0CD24FDDFh
1adfd3bd ?? 222
1a4£d3b§ 755 out 55h,eax /
1kd> up
1adfd3b? £536 lds esi, fvord ptr [esi]
1adfd3b3 142b ade al,2Bh
1a24£d3bb 6balbdli3b0d40é | imul esp,dvord ptr [ecz-ZBAFECA3h]. ¢
1adfddc2 9b wait
ladfdlcd edeb in al. DEBh
1adfd3cS b wait
1adfdicé le push ds
1adfdidc? 22 222
< |
fied> |
[Ln, Col 0 {Sys D:<None> [Proc 000:0 [Thed 000:0 [A50 [Ove [Zaes [< ;I_,I

Figure 3: Notepad Remaining Encrypted During Execution
3 Emulation-based Page Granularity Code Signing

3.1 Problem Statement

Software exploitation is a process that leverages design and implementation errors (i.e. buffer over-
lows, input-driven format strings, integer overflows, race conditions, etc.) to cause unintended
behavior which may result in security policy violations. Traditional exploitation protection mecha-
nisms (i.e. stack canaries, variable reordering, shadow arguments, SafeSEH, NX pages, link-pointer
sanity checking, pointer encoding, heap cookies, ASLR, etc.) provide a blacklist approach to soft-
ware protection. Specially crafted exploit payloads bypass these protection mechanisms.

3.2 Approach

This protection scheme provides a whitelist approach to software protection by executing signed
code exclusively. Unsigned malicious code (exploits, backdoors, rootkits, etc.) remain unexecuted,

therefore, protecting the system.

1. Host OS copies Guest OS instructions and Hash Message Authentication Code’s (HMAC) (or
digital signatures) of Guest OS instructions from Guest OS memory into Host OS memory.

2. HMACs of Guest OS instructions are recomputed using a secret key in Host OS memory.
The secret key remains in Host OS memory and is never accessible by Guest OS instructions.
Guest OS instructions with valid HMACs are translated (or interpreted) to a set of Host OS
instructions. This set of Host OS instructions is executed as before.

3. Guest OS instructions with invalid HMACs remain untranslated and therefore unexecuted.
Malicious code (unless signed using the secret key) will remain unexecuted, thus protecting
the system.

Untrusted Guest OS Memory

Guest OS Instructions
with Signatures

e
.

rusted Host OS Memory

Guest OS Instructions with Signatures o
c Guest OS Instructions with Valid Signatures

Translated Guest OS Instructions

Figure 4: Page Granularity Code Signing

References

[1] S. Burnett and S. Paine, The RSA Security’s Official Guide to Cryptography. Berkeley, CA,
USA: Osborne/McGraw-Hill, 2001.

[2] F. Bellard, “Qemu, a fast and portable dynamic translator,” in ATEC ’05: Proceedings of the
annual conference on USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 2005, pp. 41-41.

