
Reversing and Exploiting Wireless Sensors

[Work in Progress]

Travis Goodspeed
travis@radiantmachines.com

ABSTRACT
Wireless sensors will soon be part of many industrial, mili-
tary, and home networks. Of the various networking proto-
cols, which include Zigbee, ISA100, Wireless HART, 6Low-
PAN, and others, none has yet become a definitive standard.
Neither have vendors standardized upon a given operating
system, compiler, or microcontroller. Users of these sensor
networks are often given no command-line, no internal doc-
umentation, and no access to the internals of each device.
This paper provides a thorough introduction to reverse en-
gineering such devices, both in hardware and in software.

1. INTRODUCTION
That which follows is an introduction to reverse engineer-
ing and exploiting low-powered wireless embedded systems,
such as those which implement Zigbee and other 802.15.4-
based LPAN protocols. Example being taken chiefly from
the first-hand experience of the author, most involve the
MSP430 microcontroller. The TinyOS operating system and
Telos B hardware are used in order to make the exercises re-
peatable, but the techniques here presented are intended for
use on black-box devices without documentation.

2. MSP430STATIC
Many examples in this paper will include examples from
TinyOS being analyzed with MSP430static1, a disassembly
analysis tool by the author of this paper. TinyOS examples
were chosen because they may be freely distributed and re-
sults may be cross-checked with symbols, neither of which
can be done with a firmware image found in the field. Use of
these symbols is akin to looking in the back of a textbook;
they are good for proving a point, but with few exceptions
the field reverse-engineer does not have the luxury of refer-
encing them.

M4S, as it will be called for short, is a hastily written Perl
script which accesses an SQLite3 database. Queries are

1http://msp430static.sf.net/

To appear at Black Hat Federal, 2009,
February, 2009, Arlington, VA

made using SQL with a few pre-processing macros, such as
interpretation of hexadecimal addresses. For example, one
might select the last five function names and entry addresses
by “select enhex(address), name from funcs

order by address desc limit 5;”.

Macros allow for queries without parameters to easily be
called; for example, “.ivt” will print the Interrupt Vector
Table (IVT). Scripts are similar to macros, except that their
names are delimited by slashes (/) rather than dots (.) and
that they exist as files on disk rather than entries within a
macros table.

3. SCHEMATIC DIAGRAMS
Reverse engineering the schematic diagram of a wireless sen-
sor is necessary, but the connections of that schematic are
not entirely random. For example, the MSP430F1611, which
is commonly found in wireless sensors, has only two hard-
ware serial ports.2 In the Telos B, the SPI bus is connected
to the first of these (USART0) and the FTDI USB/serial
chip to the second (USART1).

This is true for clock pins, hardware-assisted I/O ports,
JTAG pins, analog I/O, and similar special-purpose pins.
Only general purpose I/O pins (GPIO) cannot be found by
this method, but for most chip packaging these can be traced
using syringes and a continuity tester.

4. ACCESSING FIRMWARE
In order to reverse engineer a wireless sensor, it is necessary
to have access to the firmware. There are many ways to
accomplish this, each of varying difficulty.

First, the firmware may often be obtained from a device by a
JTAG adapter, as many devices do not blow the protection
fuses. Fuses are either EEPROM cells, as in the case of
the PIC and AVR chips, which may cleared with the rest
of flash memory, or they are true fuses in the sense that
they physically and irreparably blow, as in the case of the
MSP430. Even then, the fuse may be physically reset with
either a micro-electronic probe station or more sophisticated
hardware.

When invasive or semi-invasive methods of firmware extrac-
tion are impractical, attacks on software can be used instead.

2The exception to this rule is the MSP430 serial bootstrap
loader (BSL), which uses a software serial port.

Figure 1: Memory Map of the TinyOS Blink Appli-
cation

For example, there exists a timing vulnerability[4][3] in the
password comparison routine of many versions of the serial
bootstrap loader of the MSP430. By exploiting this vulner-
ability, it is possible to extract firmware even from a locked
device. Use of stack overflow exploits, to be presented in this
context in Section 11, has also been made by the author to
extract locked firmware.

5. AUTOMATED ANALYSIS
5.1 Mapping Memory
One of the simplest forms of scripted analysis, shown in
Figure 1, is a memory map. In this example, the low byte
of the address is the horizontal position while the high byte
is the vertical position. Origin (0x0000) is the bottom-left
corner, 0xFF00 the top-left, and 0xFFFF the top-right.

By sight, one can recognize critical features of the applica-
tion. At 0xFFE0, near the top-right, is the Interrupt Vector
Table (IVT). In the bottom two rows (0x0000 to 0x0200),
which are the Special Function Registers (SFR), one can
see the I/O ports, clocks, and similar functions which are
configured by the image.

The red region beginning at 0x4000, the 4× 16 = 64th line,
is the actual code of the application. From the IVT, listed
in Figure 1, it can be seen that the IVT’s RESET vector,
at 0xFFFE, points to the bottom of flash memory. GCC
for the MSP430 seems to always have that behavior, in that
the RESET handler always points to the lowest address in
flash memory. Another indication that this image came from
GCC is that unused interrupts all point to the same address;
other compilers typically leave those addresses as 0xFFFF,
the default state for flash memory.

5.2 Graphs
A callgraph, such as is depicted in Figure 2, consists–in
graph theory terms–of functions as vertices and function

ffe0 403a __ctors_end

ffe2 403a __ctors_end

ffe4 403a __ctors_end

ffe6 403a __ctors_end

ffe8 403a __ctors_end

ffea 40b4 sig_TIMERA1_VECTOR

ffec 4068 sig_TIMERA0_VECTOR

ffee 403a __ctors_end

fff0 403a __ctors_end

fff2 403a __ctors_end

fff4 403a __ctors_end

fff6 403a __ctors_end

fff8 43b6 sig_TIMERB1_VECTOR

fffa 40fa sig_TIMERB0_VECTOR

fffc 403a __ctors_end

fffe 4000 _reset_vector__

Table 1: Interrupt Vector Table for Blink

calls as edges. The sixteen entries of the IVT, from Ta-
ble 1, are also seen here, in the bottom right. The pattern
of many IVT entries passing to a single handler, which then
calls a single leaf function, will become familiar to those
reverse engineering MSP430 firmware compiled by GCC.

6. MICROCONTROLLERS
6.1 Harvard and Von Neumann
Microcontroller architectures are considerably more varied
than those of personal computers. Register counts vary,
as do the purposes of registers. Unlike desktop processors,
which are all Von Neumann for practical purposes, many mi-
crocontrollers are Harvard architecture, having one memory
for data and another for instructions.

Von Neumann machines have a single address range within
which are both executable code and non-executable data.
This model will be familiar to those without embedded expe-
rience. A pointer is a pointer, and its result may be fetched
as either code or data. Embedded examples include most
implementations of ARM, PowerPC, and the MSP430.

By contrast, Harvard machines have two address spaces: one
for code, and another for data. Separate memories provide
the intentional advantage of much simpler hardware design,
as both a word of code and a word of data may be fetched
at the same time. As will be discussed later, this also com-
plicated stack overflows, as Harvard machines are unable to
execute data memory. Examples include the PIC, 8051, and
AVR microcontrollers.

6.2 Memory Mapped I/O, IVT
When reverse engineering a unix application, it is common
practice to identify system calls to the kernel as a means
of finding functions of interest. For example, it might be
worthwhile to trap all calls to read() and write() as a means
of spying on the traffic of a closed-source application. In em-
bedded systems such as wireless sensors, there is rarely a ker-
nel to handle I/O; rather, an application will itself directly
peek and poke I/O ports at memory-mapped addresses.

Suppose that we are looking for the serial byte transmit
function of a Telos B device to its CC2420 radio. As that

4000
_reset_vector__

43dc
main

4036

403a
__ctors_end

403e
unexpected

403a

404c
__nesc_atomic_start

4060
__nesc_atomic_end

4068
sig_TIMERA0_VECTOR

4084
Msp430TimerCapComP0Event$fired

4070

4094
Msp430TimerCapComP1Event$fired

40a4
Msp430TimerCapComP2Event$fired

40b4
sig_TIMERA1_VECTOR

40da

40e0

40e6

40fa
sig_TIMERB0_VECTOR

411a
Msp430TimerP1Event$fired

4104

4118
Msp430TimerP1Event$default$fired

41d4

41da
SchedulerBasicP$TaskBasic$postTask

415c

4230
TransformAlarmC0set_alarm

4162

41de

4226

432e
TransformCounterC0Counter$get

4238

43a4
Msp430TimerP1Timer$get

42f44308

4334

4394

4342
4358

43b8
sig_TIMERB1_VECTOR

43c8

43e044ea

44c0
4556

459c
SchedulerBasicP$Scheduler$runNextTask

449e
44b6

47dc
VirtualizeTimerC0Timer$startPeriodic

44ce44da
44e6482c

MotePlatformC$Init$init
446e

4910
Msp430ClockP$busyCalibrateDco

441e

497c
SchedulerBasicP$TaskBasic$runTask

455c

4994
McuSleepC$getPowerState

44f8

4a2a
__stop_progExec__

4564

4568
Msp430ClockP$set_dco_calib

4584
MotePlatformC$TOSH_FLASH_M25P_DP_bit

45ea
VirtualizeTimerC0updateFromTimer$runTask

45e2

4798
AlarmToTimerC0fired$runTask

45dc

45fa

46a2
VirtualizeTimerC0fireTimers4672

475a
TransformAlarmC0Alarm$startAt

468c

471a47264732

473c

474a

476c

4788
4782

47a2

47b6

47ce

47d2

47ca

4820

47e8

48a2
MotePlatformC$TOSH_FLASH_M25P_DP 489a

48d2

48d8
48de

48e4
48ea

48f048f648fc

49224970

498e

4988

IVT

Figure 2: Call Graph for Blink

U0CTL 0x0070 Control
U0TCTL 0x0071 Transmit Control
U0RCTL 0x0072 Receive Control
U0MCTL 0x0073 Modulation Control
U0BR0 0x0074 Baud Rate 0
U0BR1 0x0075 Baud Rate 1
U0RXBUF 0x0076 Receive Buffer
U0TXBUF 0x0077 Transmit Buffer

Table 2: USART0 Special Function Registers

sensor uses the MSP430F1611, we can use the header files
of any popular MSP430 compiler to identify the memory-
mapped address to which bytes are written for transmission.
By referencing the schematic3 or by following circuit traces,
it can be seen that the first serial port, USART0, connects
to the CC2420 radio. Table 2 provides a list of USART0’s
Special Function Registers (SFR) which I/O functions will
reference.

The SQL query “select name from funcs where asm

like ’%0077%’;” returns two addresses with the TinyOS 2.0
BaseStation application, and the shorter of these two func-
tions is the SPI write function, ‘Msp430SpiNoDmaP SpiByte
write’. 4

This function’s disassembled code is presented in Table 3.
Note that the parameter, which was passed through r15,
is copied into local variable r11, which is then copied into
&0x0077, U0TXBUF. For practice, optimize the function by
hand to eliminate usage of r11.

477e push r11

4780 mov.b r15, r11

4782 call #16460

4786 mov.b r11, &0x0077

478a call #16480

478e mov.b &0x0002,r15

4792 and.b #64, r15

4796 jz $+6

4798 mov #1, r15

479a jmp $+4

479c clr r15

479e and.b #-1, r15

47a0 cmp.b #0, r15

47a2 jz $-20

47a4 and.b #-65, &0x0002

47aa call #18356

47ae and.b #-1, r15

47b0 pop r11

47b2 ret

Table 3: Msp430SpiNoDmaP 0 SpiByte write

7. 16-BIT EMBEDDED OPERATING SYS-
TEMS

3http://www.tinyos.net/scoop/special/hardware/
4An unwelcome side effect of the TinyOS macro parser,
NesC, is that functions often have horribly complex names
delimited by the dollar sign ($). For purposes of legibility,
this delimiter will be presented as a space in prose and a
double-underscore () in code within this paper.

An embedded operating system is a very different piece of
software from a desktop operating system. In the 16-bit
world, these operating systems rarely if ever support pre-
emptive multitasking or kernel/user separation. The OS is
linked into the user application, and only a single user ap-
plication will exist on a given device. Further, as everything
is statically linked, a reverse engineer will never see sym-
bols within a firmware image, only within pre-distribution
executables such as those produced directly by a compiler.

Popular open source operating systems for wireless sensors
include Contiki and TinyOS, but it is not uncommon for a
vendor of WSN hardware to write his own operating system
from scratch.

8. INLINING
It is common for embedded operating systems to optimize
memory usage and execution speed by automatically inlining
functions where appropriate. In such operating systems, a
function will often be quite long, with many leaf functions
contained within it. Further, these long functions will often
require more registers than are available as scratch registers,
leading to opening clauses of many PUSH instructions and
ending clauses of many POP instructions.

9. NETWORKING STACKS
As has been implied by the previous sections, one can ex-
pect to find the networking stack mixed with the handling
routines in the firmware of a wireless sensor node. Lack-
ing multiprocessing, memory protection, and even memory
management, there is little reason not to have the radio
chip’s driver simply call a function to handle an incoming
packet. Similarly, there is little reason not to have a function
directly call the radio driver to send a packet.

The exception to this can be profitable, and it involves de-
layed processing of a packet. Suppose, for example, that in-
stead of directly calling the handler for a packet, the driver
posts an event for later handling. When that event is exe-
cuted, it might read the packet and then forward the packet
to another event, which is also delayed. Doing this keeps
the stack depth to a minimum and it can make power man-
agement more effective for low-packet-rate applications.

In the case of this chained approach, it might be possible to
start a race condition. By replaying a valid administrative
packet, followed by an invalid one, the attacker might cause
the former to be validated and the latter to be executed.

In either case, it is important to identify how packets are
being handled as, in the case of event-posting, there will
might be no direct call path from the radio driver to the
function handler in question.

10. SIMULATION
A good simulator is quite handy for testing a theory or prov-
ing a point. For the MSP430 platform, your author is rather
font of MSP430simu, part of the MSPGCC project. For
a detailed demonstration of modifying a simulator, see [6],
which describes the modification of MSP430simu to produce
LaTeX slides of an MSP430 stack overflow for [5].

11. STACK OVERFLOWS
11.1 Von Neumann
Stack overflow exploits of Von Neumann wireless sensors are
similar to those of an older personal computer, in that the
stack is executable. The primary difficulty is in finding vul-
nerable code, as will be discussed in Section 14, and in fitting
an exploit into an 802.15.4 packet, which has a hard limit of
128 bytes.

The first exploit of a wireless sensor node was written by the
author in the summer of 2007. Descriptions can be found in
[5] and [2].

Bypassing this restriction is possible by recognizing making
use of unused portions of RAM. Usually, global variables are
placed at the bottom of RAM and a stack grows downward
from the top of RAM. In the case of the MSP430, code in-
jected to this region is immediately executable. Once a flash
memory driver has been written to this region, it becomes
possible to copy small blocks to flash memory for a larger
executable. This can then contain a driver for external flash,
slowly loading a larger image to external memory. Finally,
when everything is ready, the internal firmware image can
be moved to external flash, and an image from external flash
loaded. If such an image were to broadcast its own injection
routines, it would be a self-propagating worm.

Further, as an infected sensor would have access to the keys
of its prior life, it could infect by the transmission of en-
crypted packets. In this way, the infection could spread
along a web of trust, even in the case of perfect, unbreak-
able cryptography.

11.2 Harvard
Infecting a Harvard sensor is considerably more complicated
in that injected code may not be run directly. Instead, pre-
existing code must be called, and the purpose of that code
is often quite different from the intended behavior of an ex-
ploit.

While non-executable stack overflows were performed by Gu
in [7], the first execution of foreign code was performed by
Francillon in [1] by use of a technique known as return-
oriented programming. In this technique, the tail of one
function is called, which then returns to the tail of another
function. Multiple tails, or meta-gadgets, can then be as-
sembled into a larger gadget.

For example, in collaboration with Francillon, the author
once found it necessary to place an arbitrary value, such as
0xDEAD, into r11 of an MSP4305, after which the machine
was to return to the entry point of anther function, 0xBEEF.
Performing an overflow that leaves 0x47B0, 0xDEAD, 0xBEEF
on the stack at the moment of a return will pop 0xDEAD
into r11, then return to 0xBEEF if the contents of Table 3
is in memory.

By chaining many such gadgets together, Francillon was able
to construct a meta-gadget that copies information from an
arbitrary address in data memory to an arbitrary address

5The MSP430 is not a Harvard machine, but all examples of
this paper stick to that platform for the sake of consistency.

Figure 3: I2C Bus Tap

in code memory. Once there, the code can be executed di-
rectly, making possible such things as self-propagating sen-
sor worms.

12. PATCHING
As linkers lay out code in a regular fashion, often growing
upward from a lower boundary, the position of code within
an executable is predictable. This linking strategy leaves
the upper regions of flash memory, with the exception of the
IVT, empty on the MSP430. As no elegant tool yet exists
for injecting code into such firmware, it can be manually
patched into this upper region.

A nice feature of the popular Intel Hex format for microcon-
troller code is that each line of ASCII text is a data record,
concluding with “:00000001FF”. By grepping this line out of
a file as it is prepended to another, a script can easily merge
two images, adding a patch to an image.

13. BUS SNIFFING
Also worth noting is that the busses used on these devices are
unprotected and vulnerable to sniffing and injection. Traffic
may even be diverted by a bus extender, one that repeats
only those messages which it wishes to let through. Figure 3
shows an I2C bus being tapped in this manner.

14. FUZZING
Fuzz testing of a wireless sensor proposes a unique difficulty,
in that the simulators for many of these platforms are lacking
in sufficient accuracy to run an entire image. In the absence
of such a simulator, how is the reverse engineer to identify
and trace the cause of a crash?

In the case of blind fuzzing, many chips revert GPIO pins to
a high-impedance input state and, while TinyOS does not,
many commercial wireless sensors print debugging informa-
tion over a serial port when booting. Either of these effects
can be used to identify which packet caused a crash, so long
as packets are sent slowly and the device does not lock up.

For cases in which the firmware is known by the attacker, the
author has found it profitable to patch the image to contain a
handler function which preserves the most recently received
packet. The fuzzing then includes with a high frequency the
address of that handler.

15. CONCLUSION
Several techniques have been presented for the reverse en-
gineering and exploitation of 16-bit wireless embedded sys-
tems. It is suggested that the reader follow the citations
of this paper to investigate any individual topic in greater
detail.

16. REFERENCES
[1] A. Francillon and C. Castelluccia. Code injection

attacks on harvard-architecture devices. In CCS 2008.

[2] T. Goodspeed. MSP430 buffer overflow exploit for
wireless sensor nodes, August 2007.

[3] T. Goodspeed. Practical attacks against the MSP430
BSL. 25C3, December 2008.

[4] T. Goodspeed. A side-channel timing attack of the
MSP430 BSL. Black Hat USA, August 2008.

[5] T. Goodspeed. Stack overflow exploits for MSP430
wireless sensors over 802.15.4. Texas Instruments
Developer Conference, February 2008.

[6] T. Goodspeed. Tracing with MSP430simu, LaTeX, and
PowerPoint, January 2008.

[7] Q. Gu and R. Noorani. Towards self-propagate
mal-packets in sensor networks. In Wisec 2008.

