

DTRACE BACKGROUND
What Is DTrace™?

*Dtrace was created by Sun Microsystems, Inc. and released under the Common Development and Distribution
License (CDDL), a free software license based on the Mozilla Public License (MPL).

DTrace Background

• Kernel-based dynamic tracing framework
• Created by Sun Microsystems
• First released with Solaris™ 10 operating System
• Now included with Apple OS X Leopard
• Soon to be included with FreeBSD
• OpenBSD, NetBSD, Linux?

*Solaris™ is a trademark of Sun Microsystems, Inc. in the United States and/or other countries.

DTrace Overview

• DTrace is a framework for performance
observability and debugging in real time

• Tracing is made possible by thousands of
“probes” placed “on the fly” throughout the system

• Probes are points of instrumentation in the kernel
• When a program execution passes one of these

points, the probe that enabled it is said to have
fired

DTrace Overview (cont.)

• DTrace can bind a set of actions to each probe
• Actions include stack trace, timestamp, and the

argument to a function
• As each probe fires, DTrace gathers the data

from your probes and reports it back to you
• If you don’t specify any actions for a probe,

DTrace will just take note of each time the probe
fires

DTrace Architecture

• DTrace exists almost entirely as a kernel module
• The kernel module performs ALL processing and

instrumentation
• DTrace consumers communicate with the kernel

module through user module libdtrace
• The dtrace command itself is a DTrace

consumer because it is built on top of the DTrace
library

DTrace Architecture

Source: Solaris Dynamic Tracing Guide

The D Language

• D is an interpreted, block-structured language
• D syntax is a subset of C
• D programs are compiled into intermediate form
• Intermediate form is validated for safety when

your program is first examined by the DTrace
kernel software

• The DTrace execution environment handles any
runtime errors

The D Language

• D does not use control-flow constructs such as if
statements and loops

• D program clauses are written as single, straight-
line statement lists that trace an optional, fixed
amount of data

• D can conditionally trace data and modify control
flow using logical expressions called predicates

• A predicate is tested at probe firing before
executing any statements

DTrace Features

• DTrace is dynamic: probes are enabled only
when you need them

• No code is present for inactive probes
• There is no performance degradation when you

are not using DTrace
• When the dtrace command exits, all probes are

disabled and instrumentation removed
• The system is returned to its original state

DTrace Features (cont.)

• DTrace is nondestructive. The system is not
paused or quiesced

• DTrace is designed to be efficient. No extra data
are ever traced

• Because of its safety and efficiency, DTrace can
be used in production to solve real problems in
real time

• These same features can be leveraged by
reverse engineers and security researchers

DTrace Uses

• DTrace takes the power of multiple tools and
unifies them with one programmatically
accessible interface

• DTrace has features similar to the following:
– truss: tracing system calls, user functions
– ptrace: tracing library calls
– prex/tnf*: tracing kernel functions
– lockstat: profiling the kernel
– gdb: access to kernel/user VM

DTrace Uses

• DTrace combines system performance statistics,
debugging information, and execution analysis
into one tight package

• A real “Swiss army knife” for reverse engineers
• DTrace probes can monitor every part of the

system, giving “the big picture” or zooming in for a
closer look

• Can debug “transient” processes that other
debuggers cannot

Creating DTrace Scripts

• Dozens of ready-to-use scripts are included with
Sun’s DTraceToolkit; they can be used as
templates

• These scripts provide functions such as syscalls
by process, reads and writes by process, file
access, stack size, CPU time, memory r/w and
statistics

• Complex problems can often be diagnosed by a
single “one-liner” DTrace script

Example: Syscall Count

1
2
3
3
4

4309
6899

• System calls count by application:
– dtrace -n 'syscall:::entry{@[execname] = count();}'.

Matched 427 probes
Syslogd
DirectoryService
Finder
TextMate
Cupsd
Ruby
vmware-vmx

Example: File Open Snoop

#!/usr/sbin/dtrace -s

syscall::open*:entry {
printf("%s %s\n",

execname,
copyinstr(arg0));

}

Example: File Snoop Output

vmware-vmx /dev/urandom
Finder /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
iChat /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
Microsoft Power /Library/Preferences/SystemConfiguration/com.apple.smb.server.plist
nmblookup /System/Library/PrivateFrameworks/ByteRange ... ByteRangeLocking
nmblookup /dev/dtracehelper
nmblookup /dev/urandom
nmblookup /dev/autofs_nowait
Nmblookup /System/Library/PrivateFrameworks/ByteRange... ByteRangeLocking

DTrace Lingo

• Providers pass the control to DTrace when a
probe is enabled

• Examples of providers include syscall, lockstat,
fbt, io, mib

• Predicates are D expressions
• Predicates allow actions to be taken only when

certain conditions are met
• Actions are taken when a probe fires
• Actions are used to record data to a DTrace

buffer

DTrace Syntax

• DTrace probe syntax:
– provider:module:function:name

• Provider. The name of the DTrace provider that created this
probe

• Module. The name of the module to which this probe belongs
• Function. The name of the function with which this probe is

associated
• Name. The name component of the probe. It generally gives

an idea of its meaning

DTrace Syntax

Generic D Script

Probe: provider:module:function:name
Predicate: /some condition that needs to happen/

{
actions to act upon

}
Even sophisticated D scripts can be implemented

with just a few probes

DTRACE AND REVERSE
ENGINEERING (RE)

How Can We Use DTrace?

DTrace for RE

• DTrace is extremely versatile and has many
applications for RE

• It is very useful for understanding the way a
process works and interacts with the rest of the
system

• DTrace probes work in a manner very similar to
debugger “hooks”

• DTrace probes can be much more useful than
debugger hooks because they can be described
generically and focused later

DTrace for RE

• One of Dtrace’s greatest assets is speed
• DTrace can instrument any process on the

system without starting or stopping it (i.e.,
debuggers)

• Complex operations can be understood with short
succinct scripts (i.e., DTrace one-liners)

• You can refine your script as the process
continues to run

• Think of DTrace as a rapid development
environment for RE tasks

DTrace vs. Debuggers

• User mode and kernel mode debuggers allow you
to control execution and inspect process
information

• DTrace can instrument BOTH MODES AT THE
SAME TIME

• To trace execution, debuggers use INT3
instructions to pause and resume execution

• For security researchers and exploit developers,
this can cause “phantom exceptions” that can be
difficult to troubleshoot

DTrace vs. Debuggers

• DTrace is not a good choice for destructive
actions

• DTrace cannot directly alter execution path or
change memory values (it can set a breakpoint
and transfer control to a debugger)

• DTrace does not directly perform exception
handling (you must implement your own)

• Currently DTrace is not susceptible to traditional
anti-debugging techniques (isdebuggerpresent()),
though Apple has implement probe blocking (just
recompile libdtrace with your own patch)

DTrace vs. Tracers

• Truss operates one process at a time, with no
systemwide capability

• Truss reduces application performance
• Truss stops threads through procfs, records the

arguments for the system call, and then restarts
the thread

• Valgrind™ is limited to the user space and cannot
gather system statistics

• Ptrace() is much more efficient at instruction level
tracing but it is crippled on OS X

*Valgrind is Open Source/Free Software and is freely available under the GNU General Public License.

DTrace Limitations

• The D language does not have conditionals or
loops

• The output of many functions is to stdout (i.e.,
stack(), unstack())

• DTrace has very limited capacity for storing or
manipulating data

• We can fix this

Ruby DTrace

• To make DTrace even more powerful, we can
combine it with an object oriented programming
(OOP) scripting language (Ruby, Python)

• Chris Andrews wrapped libdtrace in Ruby,
allowing us to create hybrid D/Ruby scripts

• This opens up new possibilities for controlling the
process and manipulating the data it returns

• Ruby-DTrace is in the same category as
programmable debuggers (pyDBG, knoxDBG,
immDBG)

The Power of Ruby

• Ruby-DTrace can be the “glue” in a powerful
reverse engineering framework

• By leveraging existing Ruby packages, we have
everything we need to do most RE tasks

• idaRub/rublib allows us to harness the power of
the powerful IDA disassembler in our Ruby-
DTrace script (over the network!@#@#)

• We can use Ruby graphing libraries to perform
data visualization (graphviz, openGL)

Ruby-DTrace and Code
Coverage

• DTrace can “hook” every function in a process
• This makes it perfect for incrementing a fuzzer

with code coverage
• Code coverage is useful for understanding what

areas are being fuzzed
• Current RE code coverage monitors are only

block based (PaiMei)
• With Ruby-DTrace we can use IDA to obtain

block information or check code coverage at the
function or instruction level

Ruby-DTrace and Code
Coverage

• With IdaRub we can “visualize” code coverage by
coloring IDA graph nodes and code paths

• This is extremely powerful when used in
conjunction with static analysis

• DTrace allows us to stop and start tracing at any
point, all without restarting the target

• Using Ruby packages, we can create many
different types of graphs, from block graphs to
3-D (graphviz, OpenGL)

Ruby-DTrace and Exploit Dev

• Ruby-DTrace is adept at understanding
vulnerabilities and exploiting them

• DTrace probes allow you to track data input flow
throughout a process to understand where and
why memory corruption took place

• Vulnerability analysis times of conventional
debuggers can be dramatically reduced with
Ruby-DTrace and IdaRub

• Methods that cause stack and heap corruption
can be pinpointed with IDA comments or coloring

Helpful Features

DTrace gives us some valuable features for free:
• Control flow indicators
• Symbol resolution
• Call stack trace
• Function parameter values
• CPU register values

Control Flow

1 -> -[AIContentController finishSendContentObject:]
1 -> -[AIAdium notificationCenter]
1 <- -[AIAdium notificationCenter]
1 -> -[AIContentController processAndSendContentObject:]
1 -> -[AIContentController handleFileSendsForContentMessage:]
1 <- -[AIContentController handleFileSendsForContentMessage:]
1 -> -[AdiumOTREncryption willSendContentMessage:]
1 -> policy_cb
1 -> contactFromInfo
1 -> -[AIAdium contactController]
1 <- -[AIAdium contactController]
1 -> accountFromAccountID

Symbol and Stack Trace

dyld`strcmp
dyld`ImageLoaderMachO::findExportedSymbol(char
dyld`ImageLoaderMachO::resolveUndefined(...
dyld`ImageLoaderMachO::doBindLazySymbol(unsigned
dyld`dyld::bindLazySymbol(mach_header const*, ...
dyld`stub_binding_helper_interface2+0x15
Ftpd`yylex+0x48
Ftpd`yyparse+0x1d5
ftpd`ftp_loop+0x7c
ftpd`main+0xe46

Function Parameters

DTrace’s copyin* functions allow you to copy data
from the process space:

printf("arg0=%s", copyinstr(arg0))

Output:

1 -> strcmp arg0=_isspecial_l

CPU Register Values

Uregs array allows access to reading CPU registers

printf(“EIP:%x”, uregs[R_EIP]);

Example:
EIP: 0xdeadbeef
EAX: 0xffffeae6
EBP: 0xdefacedd
ESP: 0x183f6000

Destructive Examples

#!/usr/sbin/dtrace -w -s
syscall::uname:entry { self->a = arg0; }

syscall::uname:return{
copyoutstr(“Windows”, self->a, 257);
copyoutstr(“PowerPC”, self->a+257, 257);
copyoutstr(“2010.b17”, self->a+(257*2), 257);
copyoutstr(“fud:2010-10-31”, self->a+(257*3), 257);
copyoutstr(“PPC”, self->addr+(257*4), 257);

}
Adapted from: Jon Haslam, http://blogs.sun.com/jonh/date/20050321

Snooping

syscall::write: entry {
self->a = arg0;

}
syscall::write: return {

printf(“write: %s”,
copyinstr(self->a);

}

Got Ideas?

Using DTrace:
• Monitor stack overflows
• Code coverage
• Fuzzer feedback
• Monitor heap overflows

MONITORING THE STACK
Writing a Stack Overflow Monitor

Stack Overflow Monitoring

Programmatic control at EIP overflow time allows
you to:

• Pinpoint the vulnerable function
• Reconstruct the function call trace
• Halt the process before damage occurs (HIDS)
• Dump and search process memory
• Send feedback to fuzzer
• Attach debugger
• Attempt repair (?)

Overflow Detection in One
Probe

#/usr/sbin/dtrace -w -s

pid$target:::return
/ uregs[R_EIP] == 0x41414141 / {
printf("Don’t tase me bro!!!");

stop()
...

}

Cautionaries

A few issues to be aware of:
• DTrace drops probes by design
• Tune options, narrow trace scope to improve

performance
• Some libraries and functions behave badly
• Stack overflows can cause violations before

function return

First Approach

• Store RETURN value at function entry
• uregs[R_SP], NOT uregs[R_ESP]
• Compare EIP to saved RETURN value at function

return
• If different, there was an overflow

Simple enough, but false positives from:
• Tail call optimizations
• Functions without return probes

DTrace and Tail Calls

C calls A, which returns value of call to B

func A(int x, int y){
.....
return B(x, y);

}

• Compiler optimizes by letting B use A’s frame
• Saves resources and requires fewer instructions

DTrace and Tail Calls (cont.)

• DTrace reports tail calls as a return from A and an
entry to B

• This is as if function C called A and then called B
• EIP on return from A is first instruction of B, NOT

the next instruction in C
• Saved RETURN ! = EIP on return of A

New Approach

• Store RETURN value at function entry
• At function return, compare saved RETURN value

with CURRENT value
• Requires saving both the original return value and

its address in memory
• Fires when saved RETURN ! = current RETURN

and EIP = current RETURN

But Missing Return Probes???

Still trouble with functions that “never return”
• Some functions misbehave
• DTrace does not like function jump tables

(dyld_stub_*)
• Entry probe but no exit probe

Determining Missing Returns

Using DTrace – l flag
• List entry/exit probes for all functions
• Find functions with entry but no exit probe
Using DTrace aggregates
• Run application
• Aggregate on function entries and exits
• Look for mismatches
Exclude these functions with predicates
• / probefunc ! = “everybodyJump” /

Stack Overflow in Action

Advanced Tracing

Diving in deeper:
• Instruction-level tracing
• Code coverage with IDA Pro and IdaRub
• Profiling idle and GUI code
• Feedback to the fuzzer, smart/evolutionary

fuzzing
• Conditional tracing based on function parameters

(reaching vulnerable code paths)

CODE COVERAGE
Instruction Tracing

Code Coverage Approach

Approach
• Instruction-level tracing using DTrace
• No breakpoints required
• Minimal (really?) interference with application
• Use IdaRub to send commands to IDA
• IDA colors instructions and code blocks
• Can be done in real time, if you can keep up

Tracing Instructions

• The last field of a probe is the offset in the
function

• Entry = offset 0
• Leave blank for every instruction
• Must map static global addresses to function

offset addresses

Print address of every instruction:
pid$target:a.out:: { print(“%d”, uregs[R_EIP]); }

Ruby-DTrace

• Wraps libdtrace
• Not much different than parsing output of DTrace
• Communication is one way
• Buys us the programmatic response
• Still does not interfere with application/kernel

IdaRub

• Wraps IDA interface
• Ruby code is the client
• Server is IDA plugin
• Ruby glues it all together
• IdaRub was released by Spoonm at REcon 2006

ida.set_item_color(eip, 3000)

More info:
http://www.metasploit.com/users/spoonm/idarub/

Library Coverage

• Must know memory layout of program
• vmmap on OS X will tell you
• Use offset to map runtime library EIPs to

decompiled libraries

Code Coverage with DTrace

Capabilities:
• Associate fuzz runs with code hit
• Visualize code paths
• Record number of times blocks were hit
• Compare idle traces to other traces

Limitations:
• Instruction tracing can be slow for some

applications
• Again, tuning and limiting scope

Coverage Visualization

MONITORING THE HEAP
Writing a Heap Overflow Monitor

Ruby-DTrace and the Heap

• The heap has become “the” major attack vector replacing
stack-based buffer overflows

• Relatively common unlink() write4 primatives are no
longer as “easy” to exploit

• See Aitel and Waisman’s excellent “Debugging with ID”
presentation for more details

• As they point out, the key to the “new breed” of heap
exploit is understanding the heap layout and allocation
patterns

• ImmDBG can help you with this on XP, and Gerrado
Richarte’s heap tracer can help you with this on Solaris
and Linux

Ruby-DTrace and the Heap

• Just as heap checks have killed unlink4() on >=
SP2 and glibc

• Nemo’s (Phrack 64) technique for overwriting the
malloc_zone_t function pointers died with Tiger
10.4.2

• Exploit engineers need help on OS X
• RE:Trace can help you on OS X
• DTrace naturally hooks the functions necessary

to understand the layout of the heap and its
allocation patterns

• With DTrace we can do even more

Ruby-DTrace and the Heap

• Gera’s Heap Tracer works with truss or ltrace to
hook the functions that make up the heap
(malloc(), calloc(), free(), mmap()), etc.

• ImmLib does the same
• We can do this with RE:Trace and more
• Not only can we hook dynamic allocation

functions to “watch” the heap
• We can also determine what functions are writing

to the heap and hook their arguments to find heap
overflows, double free(), and double malloc()

RE:Trace Heap Smasher()

Refresher:
• When you malloc() on OS X, you are actually

calling the scalable zone allocator, which breaks
allocations into different zones by size:

Adapted from: OS X Internals A System Approach

RE:Trace Heap Smasher()

• In our heap smash detector, we must keep track
of four different heaps

• We do this by hooking malloc() calls and storing
them to ruby hashes with the pointer as the key
and the size allocated as the value

• We break the hashes into tiny, small, large, and
huge by allocation size

• We then hook all allocations and determine if the
pointer falls in the range of the previous
allocations. We can adjust the heap as memory is
free()’d or realloc’d()

RE:Trace Heap Smasher()

• In the process, we can detect double free()’s
double malloc’s leak, etc.

• There are similar tools to do this already (malloc
debug, memory leak tools), but DTrace can be
tailored to the application you are researching

• We can easily tailor our output to work with
Gera’s Heap Tracer OpenGL interface or write
our own with Ruby-OpenGL

• The really interesting functionality is used to look
for errors in malloc usage

RE:Trace Heap Smasher()

• By hooking C functions(strncpy, memcpy,
memmove, etc.) we can determine if they are
overallocating to locations in the heap by looking
at the arguments

pid$target::strncpy:entry {
self->sizer = arg2;
printf("copyentry:dst=0x%p|src=0x%p;size=%i", (int) *(int *)

copyin(arg0, 8), (int) *(int *) copyin((user_addr_t) arg1, 4), arg2);
self->sizer = 0;

}

RE:Trace Heap Smasher()

• We can check to see if the allocation happens in
a range we know about (check the hash). If it
does, we know the size allocation, and we can tell
if a smash will occur

• Compared to our stack smash detector, we need
very few probes. A few dozen probes will hook all
the functions we need

• We can attach to a live process on and off without
disturbing it

• It is better to start the process with heap smash
so we don’t miss anything

RE:Trace Heap Smasher()

• We also keep a hash with the stack frame, which
is called the original malloc()

• When an overflow is detected, we know:
– Who allocated it (stack frame)
– Who used it (function hook)
– Where the overflowed memory is
– How large the overflow was

RE:Trace Heap Smasher()

hochi@TEKDBZ:~$ sudo ruby heapsmash.rb 938
initializing probes...
starting tracing...
HEAP OVERFLOW DETECTED!!! AT ADDRESS

0x16e6c000
BY PROBE: pid938:libSystem.B.dylib:memcpy:entry

copyentry:dst=0x16e6c000|src=0x7269662f;size=56
DEST SIZE 48
COPY SIZE 56
MALLOC'D FROM: libmozjs.dylib`JS_malloc+0x1d

RE:Trace Heap Smasher()

• Future additions:
• Graphviz/OpenGL Graphs
• There is a new version of Firefox which has probes in the

JavaScript library
• This would give us functionality similar to Alexander

Soitorov’s HeapLib (Heap Fung Shui) for heap
manipulation generically

• Safari should follow soon
• You tell me?

DTRACE DEFENSE
Using DTrace Defensively

Basic HIDS with DTrace

• Return to LibC, the major attack vector for stack-
based buffer overflows

• Return to Mprotect() is also big
• Using Dtrace, you can profile your applications

basic behavior
• You should then be able to trace for anomalies

with predicates
• This is great for hacking up something to protect

a custom application
• Easy to create a rails interface with Ruby-DTrace

Basic HIDS with DTrace

• Problem: “I want to use QuickTime, but it’s got
more holes than something with a lot of holes”

• Make a DTrace script to call stop() when weird
stuff happens

• QuickTime probably never needs to call /bin/sh or
mprotect() on the stack to make it readable
(Houston we have a problem)

• Then again…

*QuickTime® is a registered trademark of Apple Inc. in the United States and/or other countries.

Basic HIDS with DTrace

#!/usr/sbin/dtrace -q -s

proc:::exec
/execname == "QuickTime Playe" &&
args[0] == "/bin/sh"/

{
printf("\n%s Has been p0wned! It tried

to spawned %s\n”, execname, args[0])
}

DTrace and Rootkits

• Check out Archim’s paper “B.D.S.M the Solaris
10 Way,” from the CCC Conference
• He created the SInAr rootkit for Solaris 10
• Describes a method for hiding a rootkit from
DTrace
• Only works on SPARC
• DTrace FBT (kernel) provider can spy on all
active kernel modules
• Should have the ability to detect rootkits, which
don’t explicitly hide from DTrace (SInAr is the only
one I could find)
• Expect more on this in the future

DTrace for Malware Analysis

• Very easy to hack up a script
• Recent Leopard affected DNS Changer (OSX.RSPlug.A)
• Why the heck is my video codec calling…
• /usr/sbin/scutil
• add ServerAddresses * $s1 $s2
• set State:/Network/Service/$PSID/DNS
• You can monitor file I/O and syscalls with just two lines
• Scripts to do this now included with OS X by default
• Malware not hiding from DTrace yet
• BUT Apple made that a feature (yayyy!)

Hiding from DTrace

• Core DTrace developer Adam Leventhal discovered that
Apple crippled DTrace for Leopard

• This is against the basis for DTrace
• Your application can set the “PT_ATTACH_DENY” flag to

hide from DTrace just like you can for GDB
• Leventhal used timing attacks to figure out they are hiding

iTunes™ and QuickTime from DTrace
• http://blogs.sun.com/ahl/entry/mac_os_x_and_the
• Very easy to patch in memory or with kext
• Landon Fuller released a kext to do this
• http://landonf.bikemonkey.org/code/macosx/Leopard_PT_

DENY_ATTACH.20080122.html

Conclusion

DTrace can:
• Collect an unprecedented range of data
• Collect very specific measurements
• Scope can be very broad or very precise

Applied to Reverse Engineering:
• Allows researchers to pinpoint specific situation (overflows)
• Or to understand general behavior (heap growth)

See the RE:Trace framework for implementation

Future Work

• Automated feedback and integration with fuzzers
• Kernel tracing
• Improved overflow monitoring
• Utilizing application-specific probes (probes for JS

in browsers, MySQL probes, ...)

Your own ideas!

Thank You!

Tiller Beauchamp
SAIC
Tiller.L.Beauchamp@SAIC.com

David Weston
SAIC
David.G.Weston@saic.com

Questions?

	Slide Number 1
	DTRACE BACKGROUND
	DTrace Background
	DTrace Overview
	DTrace Overview (cont.)
	DTrace Architecture
	DTrace Architecture
	The D Language
	The D Language
	DTrace Features
	DTrace Features (cont.)
	DTrace Uses
	DTrace Uses
	Creating DTrace Scripts
	Example: Syscall Count
	Example: File Open Snoop	
	Example: File Snoop Output
	 DTrace Lingo
	 DTrace Syntax
	 DTrace Syntax
	DTRACE AND REVERSE ENGINEERING (RE)
	DTrace for RE
	DTrace for RE
	DTrace vs. Debuggers
	DTrace vs. Debuggers
	DTrace vs. Tracers
	DTrace Limitations
	Ruby DTrace
	The Power of Ruby
	Ruby-DTrace and Code Coverage
	Ruby-DTrace and Code Coverage
	Ruby-DTrace and Exploit Dev
	Helpful Features
	Control Flow
	Symbol and Stack Trace
	Function Parameters
	CPU Register Values
	Destructive Examples
	Snooping
	Got Ideas?
	MONITORING THE STACK
	Stack Overflow Monitoring
	Overflow Detection in One Probe
	Cautionaries
	First Approach
	DTrace and Tail Calls
	DTrace and Tail Calls (cont.)
	New Approach
	But Missing Return Probes???
	Determining Missing Returns
	Stack Overflow in Action
	Advanced Tracing
	CODE COVERAGE
	Code Coverage Approach
	Tracing Instructions
	Ruby-DTrace
	IdaRub
	Library Coverage
	Code Coverage with DTrace
	Coverage Visualization
	MONITORING THE HEAP
	Ruby-DTrace and the Heap
	Ruby-DTrace and the Heap
	Ruby-DTrace and the Heap
	RE:Trace Heap Smasher()
	RE:Trace Heap Smasher()
	RE:Trace Heap Smasher()
	RE:Trace Heap Smasher()
	RE:Trace Heap Smasher()
	RE:Trace Heap Smasher()
	RE:Trace Heap Smasher()
	RE:Trace Heap Smasher()
	DTRACE DEFENSE
	Basic HIDS with DTrace
	Basic HIDS with DTrace
	Basic HIDS with DTrace
	DTrace and Rootkits
	DTrace for Malware Analysis
	Hiding from DTrace
	Conclusion
	Future Work
	Thank You!

