
HTTP Parameter Pollution
Vulnerabilities in Web Applications

Marco `embyte` Balduzzi

Blackhat Webcast Series - 28 May 2011	

Who am I?
  From Bergamo (IT) to the French

Riviera
  MSc in Computer Engineering
  PhD at EURECOM
  8+ years experience in IT Security
  Engineer and consultant for

different international firms
  Co-founder of BGLug, Applied Uni

Lab, (ex) SPINE Group, Nast, etc…

  http://www.iseclab.org/people/
embyte

Blackhat Webcast Series - 28 May 2011	

The Web as We Know It
  Has evolved from being a collection of simple and static

pages to fully dynamic applications
  Applications are more complex than they used to be
  Multi-tier architecture is the normal
  Many complex systems have web interfaces

Blackhat Webcast Series - 28 May 2011	

The Web before

Blackhat Webcast Series - 28 May 2011	

Now

Blackhat Webcast Series - 28 May 2011	

Increased Importance of Web Security
  As a consequence:

  Web security has increased in importance
  OWASP, the Top Ten Project
  Attack against web apps constitute 60% of attacks on the

Internet (SANS’s The Top Cyber Security Risks)
  Application being targeted for hosting drive-by-download

content or C&C servers
  Malware targeting browsers (e.g. key and network loggers)

Blackhat Webcast Series - 28 May 2011	

Increased Importance of Web Security
  A lot of work done to detect injection type flaws:

  SQL Injection
  Cross Site Scripting
  Command Injection

  Injection vulnerabilities have been well-studied, and tools
exist
  Sanitization routines in languages (e.g., PHP)
  Static code analysis (e.g., Pixy, OWASP Orizon)
  Dynamic techniques (e.g., Huang et al.)
  Web Application Firewalls (WAF)

Blackhat Webcast Series - 28 May 2011	

HTTP Parameter Pollution
  A new class of Injection Vulnerability called HTTP

Parameter Pollution (HPP) is less known
  Has not received much attention
  First presented by S. di Paola and L. Carettoni at OWASP 2009

  Attack consists of injecting encoded query string
delimiters into existing HTTP parameters (e.g. GET/
POST/Cookie)
  If application does not sanitize its inputs, HPP can be used to

launch client-side or server-side attacks
  Attacker may be able to override existing parameter values,

inject a new parameter or exploit variables out of a direct
reach

Blackhat Webcast Series - 28 May 2011	

HTTP Parameter Handling
  During interaction with web application, client provides

parameters via GET/POST/Cookie
  HTTP allows the same parameter to be provided twice

  E.g., in a form checkbox
http://www.w3schools.com/html/tryit.asp?
filename=tryhtml_form_checkbox

  What happens when the same parameter is provided
twice?
  http://www.google.com/search?q=italy&q=china
  http://www.site.com/login?user=alice&user=bob

Blackhat Webcast Series - 28 May 2011	

Google example

Blackhat Webcast Series - 28 May 2011	

Yahoo example

Blackhat Webcast Series - 28 May 2011	

HTTP Parameter Handling
  We manually tested common methods of 5 different

languages

  There is nothing bad with it, if the developer is aware of
this behavior
  Languages provide secure functions (python’s getfirst())

Technology/Server Tested Method Parameter Precedence

ASP/IIS Request.QueryString(“par”) All (comma-delimited string)

PHP/Apache $_GET(“par”) Last

JSP/Tomcat Request.getParameter(“par”) First

Perl(CGI)/Apache Param(“par”) First

Python/Apache getvalue(“par”) All (List)

Blackhat Webcast Series - 28 May 2011	

HTTP Parameter Pollution (Client-Side)

Site vulnerable to
HTTP Parameter Pollution

Trigger URL are
sent to the victims

Malformed Page

Malicious Action

User Attack

Attacker generates
The Trigger URL Examples:

-  Deletion of personal emails
-  Generation of custom friend-requests
-  Posting malicious wall posts
-  Purchasing unintended products
-  Unintended voting

Blackhat Webcast Series - 28 May 2011	

Example: Unintended voting
  An application for voting between two candidates
  The two links are built from the URL

  No sanitization

Url : http://host/election.jsp?poll_id=4568

Link1:
 Vote for Mr.White
Link2:
 Vote for Mrs.Green

ID = Request.getParameter(“pool_id”)
href_link = “vote.jsp?poll_id=” + ID + ”&candidate=xyz”

Blackhat Webcast Series - 28 May 2011	

Example: Unintended voting
  poll_id is vulnerable
  Attacker generate a Trigger URL to be sent to his victims:

  http://host/election.jsp?poll_id=4568%26candidate%3Dgreen

  The resulting page now contains injected links:

  Candidate Mrs. Green is always voted!

 Vote for Mr. White

 Vote for Mrs. Green

Blackhat Webcast Series - 28 May 2011	

Example: Misleading shopping users

Blackhat Webcast Series - 28 May 2011	

Blackhat Webcast Series - 28 May 2011	

HTTP Parameter Pollution (Server-Side)

Attacker generates
The Trigger URL

Blackhat Webcast Series - 28 May 2011	

Frontend

  Used to exploit the server-side logic of the web-
application

  The attacker sends the Trigger URL to the vulnerable
application

Backend

HPP Server-Side: Example #1
  E.g., Payment system (di Paola / Carettoni)

void private executeBackendRequest(HTTPRequest request){
 String amount=request.getParameter("amount");
 String beneficiary=request.getParameter("recipient");
 HttpRequest("http://backendServer.com/servlet/actions","POST”,
 action=transfer&amount="+amount+"&recipient="+beneficiary);
}

Blackhat Webcast Series - 28 May 2011	

Trigger URL: http://frontendHost.com/page?amount=1000&
 recipient=Mat%26action%3dwithdraw

Injected query on the backend:
HttpRequest("http://backendServer.com/servlet/actions","POST”,
 action=transfer&amount=1000&recipient=Mat&action=withdraw);

HPP Server-Side: Example #2
  E.g., Access the user passwords
  ASP concatenates the values of two parameters with the

same name with a comma
  This permits to inject and modify the query on the

database

Normal requests:
URL: printEmploys?department=engineering
Back-end: dbconnect.asp?what=users&department=engineering
Database: select users from table where department=engineering

HPP injected requests:
URL: printEmploys?department=engineering%26what%3Dpasswd
Back-end: dbconnect.asp?what=users&department=engineering&what=passwd
Database: select users,passwd from table where department=engineering

Blackhat Webcast Series - 28 May 2011	

Parameter Pollution – More uses
  1) Cross-channel pollution

  Override parameters between different input channels (GET/
POST/Cookie)

  Good security practice: accept parameters only from where
they are supposed to be supplied

  2) Bypass CSRF tokens
  E.g. Yahoo Mail client-side attack (di Paola & Carettoni)
  The user’s mails get automatically deleted!

Blackhat Webcast Series - 28 May 2011	

Parameter Pollution – More uses
  3) Bypass WAFs input validation checks

  Split & Join the attack payload
  E.g., SQL injection via parameter replication
  Exploit ASP concatenation behavior and inline comments

Standard: show_user.aspx?id=5;select+1,2,3+from+users+where+id=1–
Over HPP: show_user.aspx?id=5;select+1&id=2&id=3+from+users+where+id=1—

Standard: show_user.aspx?id=5+union+select+*+from+users—
Over HPP: show_user.aspx?id=5/*&id=*/union/*&id=*/select+*/*&id=*/from+users--

Blackhat Webcast Series - 28 May 2011	

System for HPP Detection
  Four main components: browser, crawler, two scanners

Blackhat Webcast Series - 28 May 2011	

P-Scan: Analysis of the Parameter
Precedence

  Analyzes a page to determine the precedence of
parameters, when multiple occurrences of the same
parameter are submitted

  Take parameter par1=val1, generate a similar value
par1=new_val

  Page0 (original): app.php?par1=val1
  Page1 (test 1) : app.php?par1=new_val
  Page2 (test 2) : app.php?par1=val1&par1=new_val

  We compare how similar are the pages
  Page0==Page2 -> precedence on first parameter
  Page1==Page2 -> precedence on second parameter

  Check for errors on test 2

Blackhat Webcast Series - 28 May 2011	

V-Scan: Testing for HPP vulnerabilities
  For every page, an innocuous URL-encoded parameter

(nonce) is injected in the page’s parameters
  E.g., ?q=italy%26foo%3Dbar

  The page is submitted (GET/POST)

  Then, the answered page is checked for containing the
decoded version of the nonce (&foo=bar):
  In links or forms (action)

Blackhat Webcast Series - 28 May 2011	

Where to inject the nonce

  PA = PURL ∩ PBody : set of parameters that appear
unmodified in the URL and in the page content (links,
forms)

  PB = p | p ∈ PURL ∧ p /∈ PBody : URL
parameters that do not appear in the page. Some of
these parameters may appear in the page under a
different name

  PC = p | p /∈ PURL ∧ p ∈ PBody : set of
parameters that appear somewhere in the page, but
that are not present in the URL

Blackhat Webcast Series - 28 May 2011	

Reducing the False Positives
  E.g., one of the URL parameters (or part of it) is used as

the entire target of a link

  Self-referencing links

  Similar issues with printing, sharing functionalities
  To reduce false positives, we use heuristics

  E.g., the injected parameter does not start with http://
  Injection without URL-encoding

Blackhat Webcast Series - 28 May 2011	

Implementation – The PAPAS tool
  PAPAS: Parameter Pollution Analysis System
  The components communicate via TCP/IP sockets

  Crawler and Scanner are in Python
  The browser component has been implemented as a Firefox

extension
  Advantage: We can see exactly how pages are rendered (cope

with client-side scripts, e.g. Javascript)
  Support for multiple sessions (parallelization)

  Now, as a free-to-use-service:
  http://papas.iseclab.org

Blackhat Webcast Series - 28 May 2011	

Two set of experiments
  1) We used PAPAS to scan a set of popular websites
  About 5,000 sites collected by the first 500 of Alexa’s

main categories
  The aim: To quickly scan as many websites as possible and

to see how common HPP flaws are

  2) We then analyzed some of the sites we identified to be
HPP-vulnerable in more detail

Blackhat Webcast Series - 28 May 2011	

The 5,016 tested sites

Categories # of Tested
Applications

Categories # of Tested
Applications

Financial 110 Shopping 460

Games 300 Social Networking 117

Government 132 Sports 256

Health 235 Travel 175

Internet 698 University 91

News 599 Video 114

Organization 106 Others 1,401

Science 222

Blackhat Webcast Series - 28 May 2011	

Efficient assessment
  In 13 days, we tested 5,016 sites and more than 149,000

unique pages
  To maximize the speed, the scanner

  Crawled pages up to a distance of 3 from the homepage
  Considered links with at least one parameter (except for the

homepage)
  Considered at max 5 instances for page (same page, different

query string)
  We disabled pop-ups, images, plug-ins for active content

technologies

Blackhat Webcast Series - 28 May 2011	

Evaluation – Parameter Precedence
  Database Errors

  Web developers does not seem conscious of the possibility to
duplicate GET/POST parameter

  No sanitization is in place

Blackhat Webcast Series - 28 May 2011	

Nasa.gov: coldfusion SQL Error

Blackhat Webcast Series - 28 May 2011	

Evaluation – Parameter Precedence
  Parameter Inconsistency

  Sites developed using a combination of heterogeneous
technologies (e.g. PHP and Perl)

  This is perfectly safe if the developer is aware of the HPP
threat… this is not always the case

Blackhat Webcast Series - 28 May 2011	

Evaluation – HPP Vulnerabilities
  PAPAS discovered that about 1,500 (30%) websites

contained at least one page vulnerable to HTTP
Parameter Injection
  The tool was able to inject (and verify) an encoded parameter

  Vulnerable != Exploitable
  Is the parameter precedence consistent?
  Can a possible attacker override existing parameter values?

Blackhat Webcast Series - 28 May 2011	

Vulnerable or Exploitable?
  Injection on link
  Read a mail: http://site.com/script?mail_id=10&action=read

  Parameter in the middle -> always overriding
  ?mail_id=10&action=delete&action=read

  Parameter at the begin/end -> automated check via P-Scan
  ?action=read&mail_id=10&action=delete

  Injection on form:
  The injected value is automatically encoded by the browser
  Still, someone may be able to run a two-step attack (client-side) or a

server-side attack

  702 applications are exploitable (14%)

Blackhat Webcast Series - 28 May 2011	

Evaluation

  More sensitive sites are equally (or even more) affected
by the problem

Blackhat Webcast Series - 28 May 2011	

Some Case Studies
  We investigated some of the websites in more detail

  Among our “victims”: Facebook, Google, Symantec, Microsoft,
PayPal, Flickr, FOX Video, VMWare, …

  We notified security officers and some of the problems were
fixed

  Facebook: share component
  Several shopping cart applications could be manipulated to

change the price of an item
  Some banks were vulnerable and we could play around with

parameters
  Google: search engine results could be manipulated

Blackhat Webcast Series - 28 May 2011	

Your (secured) home banking

Blackhat Webcast Series - 28 May 2011	

Blackhat Webcast Series - 28 May 2011	

And Google 

Blackhat Webcast Series - 28 May 2011	

HPP Prevention
  Input validation

  Encoded query string delimiters

  Use safe methods
  Handle the parameter precedence
  Channel (GET/POST/Cookie) validation

  Raise awareness
  The client can provide the same parameter twice (or more)

Blackhat Webcast Series - 28 May 2011	

Conclusion
  Presented the first technique and system to detect HPP

vulnerabilities in web applications.
  We call it PAPAS, http://papas.iseclab.org

  Conducted a large-scale study of the Internet
  About 5,000 web sites

  Our results suggest that Parameter Pollution is a largely
unknown, and wide-spread problem

  We hope that this work will help raise awareness about
HPP!

Blackhat Webcast Series - 28 May 2011	

References
  Minded Security Blog, S. di Paola & L. Carettoni

  http://blog.mindedsecurity.com/2009/05/client-side-http-
parameter-pollution.html

  White paper
  http://www.iseclab.org/people/embyte/slides/BHEU2011/

whitepaper-bhEU2011.pdf

  I collected a bunch of resources here:
  http://papas.iseclab.org/cgi-bin/resources.py

Blackhat Webcast Series - 28 May 2011	

Thanks for your attention.

embyte@iseclab.org	

Blackhat Webcast Series - 28 May 2011	

