
Showcase Showdown
Browser Security Edition

Actionable Metrics for Web Browser Security

Shawn Moyer
Practice Manager

Ryan Smith
Chief Scientist

Hi, BlackHat.

�  Quick overview of browser security research
�  Released in late 2011

�  Evaluated security of Internet Explorer 9, Chrome 12 & 13 ,
Firefox 5, on Windows 7 (32-bit)

�  Collaborative effort by the entire Labs R&D team:
�  Drake, Mehta, Miller, Moyer, Smith, Valasek

�  Some key points and a nickel tour.

�  Paper, etc: http://www.accuvantlabs.com

We’ve come a long way...

�  The browser is the most critical application we use today
�  In some cases it may be the only application we use

�  Especially true as we move to SaaS / cloud / etc

�  Most common entry point for viruses, malware, client-side
exploitation

No maps for these territories

�  Metrics / bakeoffs thus far have been narrowband
�  Focused on some single, easy-to-measure test case

�  Bar charts are not the end goal of security “research”

�  We took a more holistic view.
�  Defined shared attack surface on 3 major browsers

�  Specific focus on exploitation/persistence defense

�  Our goal was to create measurable, agnostic criteria

�  Public release of all test data and tool chains to foster an open
dialogue

Browser Security Ecosystem

�  We defined the browser security ecosystem as:
�  Browser Process Security Architecture

�  Add-On Security (Plugins, Extensions)
�  Exploit Mitigation and Sandboxing

�  Malware Detection / Blacklisting
�  Historical Vulnerability Metrics

�  Again, our focus was on commonalities.

Process Security Architecture

�  Common across all modern browsers:
�  Multi-process / multi-threaded architecture

�  Security barriers, trust zones, integrity models

�  Integrity models in Windows 7:
�  System
�  High

�  Medium
�  Low

IE Process Architecture

�  “Loosely Coupled” model
�  UI frame, tabs (low integrity) largely independent

�  Medium integrity broker process
�  Creates low integrity tabs:

�  General Browsing and Rendering

�  ActiveX controls and other plugins

�  GPU acceleration

�  Tab-independent: downloads, toolbars, etc

Chrome Process Architecture

�  Uses a medium integrity broker process
�  Manages the UI

�  Creates separate low integrity processes for:
�  Rendering tabs

�  Out-of-process hosting for plugins, extensions

�  GPU acceleration

�  Named pipes created by broker for IPC

Firefox Process Architecture

�  Single, medium integrity browser process
�  Contains entire browsing session in a single address space

�  All tabs

�  All add-ons

�  GPU acceleration

�  etc.

�  One exception: Flash and Silverlight plugins
�  Hosted out-of-process at medium integrity

Why Architecture Matters

�  Process architecture determines if an exploit will
�  Succeed or fail

�  Attain persistence

�  Have access to other in-browser data

�  Communicate with other processes / plugins

�  Along with sandboxing, key criteria for true exploitability

Sandboxing

�  Why is sandboxing important?
�  There will always be bugs (until Skynet takes over)

�  Assume attackers will find a method for exploitation
�  Limit what damage can be done

�  We’ve accepted compromise, hence emphasis on
limitations post-mortem

�  Ultimately if a sandbox bypass is required to land a
payload, attacker complexity is increased

Sandboxing (cont.)

�  General effectiveness of sandboxes

Sandboxing (cont.)

�  Google Chrome prevents processes in the sandbox from
doing much of anything
�  Even if permission is granted, it is limited to the alternate

desktop

�  Microsoft Internet Explorer allows read access to most
objects on the operating system
�  Deters a handful of system modifications

�  Mozilla Firefox, on the other hand, is only limited by
standard medium integrity
�  Permitting read, write and system change capabilities

associated with regular, non-administrator users
�  If current user can do it, so can FF

JavaScript JIT Hardening

�  JIT engines emit native code that can weaken security

�  ASLR and DEP already exist for compiled binaries, but are
not effective protections for JIT engines because
�  JIT compilation bridges the distinction between data and code
�  Predictable executable memory can turn a previously un-

exploitable bug into a trivial exploit

�  JIT hardening prevents the abuse of the JIT engine itself

JIT Hardening Comparison

URL Blacklisting Services

�  Intent: Early warning system for fast-flux malware
�  IE: MS Phishing filter -> MS URS / SmartScreen Filter
�  Google SBL, used by Chrome, FF, Safari

�  Similar goals, some implementation differences
�  SBL: Sourced from crawl data, public submissions
�  MS URS: Numerous private feeds, public submissions

�  We tested both services against public malware URL feeds
�  BLADE, MalwareBlacklist, MalwareDomains, MalwarePatrol
�  We wanted to use public, attributable sources

Blacklisting Services (cont.)

�  3086 average unique live URLs per day
�  404 vs 405 matches for SBL vs URS

�  Interestingly, 42 SBL URLs also in URS
�  No URS URLs in SBS

Blacklisting Services (cont.)

�  Both only ID a fraction of our sample set. What gives?
�  Apparently, malware SIGINT is really hard

�  Sharing info / collaboration could help

�  Still, it’s clear neither of these services is a panacea

Vulnerability Statistics

�  Difficult if not impossible to make clear comparisons here
�  Privately disclosed bugs, rollups, internal discoveries

�  Timelines and vagaries, severity metrics
�  We discarded what wasn’t clearly measurable, normalized the

data

Vuln Stats (cont.)

�  One fairly reliable and interesting metric is time to patch
�  Again, based only on what we could normalize

Conclusions

�  Every browser has improved over the last 4 years
�  Diversity and the browser wars have benefited end users

�  Most of the yardsticks are broken
�  Security models are hard to make charts from

�  We believe, that the best defended browser is the most
payload-hostile one

Conclusions (cont.)

�  In the long run, no disinfectant like sunlight
�  Without transparency, there’s no real debate on this topic

�  We shared our tools and data, anyone is welcome to debate
the merit of our work, regardless of funding

�  We’re proud of the dialogue and conversation we created
�  We hope we’ve set a precedent in publishing our test data

�  Please expand our research! We might even help!

