
Securely Implementing

Network Protocols: Detecting

and Preventing Logical Flaws

Mathy Vanhoef (KU Leuven)

Black Hat Webcast, 24 August 2017

@vanhoefm

Introduction

Many protocols have been affected by logical bugs

2

Design flaws Implementation flaws

TLS

BEAST11

POODLE12

Lucky 1313

…

Early CCS attack5

FREAK8

Logjam10

…

Wi-Fi

WEP

Protected setup7

Key reinstallations1

…

Bad state machine4

No downgrade check4

Bad randomness6,7

…

SSH CBC plaintext recovery2 Bad state machine3

Introduction

Many protocols have been affected by logical bugs

3

We focus on logical

implementation flaws

Implementation flaws

Early CCS attack5

FREAK8

Logjam10

…

Bad state machine4

No downgrade check4

Bad randomness6,7

…

Bad state machine3

How were TLS flaws detected?

4

2014

• Kikuchi discovered the early CCS attack5

• Manual inspection of CCS transitions in implementations

2015

• Beurdouche et al: manually define state machine of TLS8

• Use state machine to generate invalid handshakes

2016

• de Ruiter and Poll: extract state machine automatically9

• Manually inspect state machine for anomalies

Several works audited state machines:

Lesson: use model-based testing!

 Test if program behaves according to some abstract model

 Proved successful against TLS

 We applied model-based approach on the Wi-Fi handshake

 Our technique can be used to test other protocols!

5

 Model-based testing!

Background: the Wi-Fi handshake

Main purposes:

 Network discovery

 Mutual authentication & negotiation of pairwise session key

 Securely select cipher to encrypt data frames

6

WPA-TKIP

Short-term solution: reduced security

so it could run on old hardware

AES-CCMP

Long-term solution based on

modern cryptographic primitives

Wi-Fi handshake (simplified)

7

Wi-Fi handshake (simplified)

8

Wi-Fi handshake (simplified)

9

Wi-Fi handshake (simplified)

10

Defined using

EAPOL frames

EAPOL frame layout

11

EAPOL frame layout

12

MICheader replay counter … key data

encrypted

≈

Test generation rules:

(in)correct modifications

Model-based testing: our approach

13

Model: normal

handshake

Set of test

cases

Test generation rules:

 Test various edge cases, allows some creativity

 Are assumed to be independent (avoid state explosion)

A test case defines:

1. Messages to send & expected replies

2. Results in successful connection?

Executing test cases

14

Execute test case

Check if connection

successful

unexpected result

For every test case

unexpected reply

Save failed test

Reset
All OK

Afterwards inspect failed test cases

 Experts determines impact and exploitability

Test generation rules

Test generation rules manipulating messages as a whole:

1. Drop a message

2. Inject/repeat a message

Test generation rules that modify fields in messages:

1. Bad EAPOL replay counter

2. Bad EAPOL header (e.g. message ID)

3. Bad EAPOL Message Integrity Check (MIC)

4. Mismatch in selected cipher suite

5. …
15

Evaluation

We tested 12 access points:

 Open source: OpenBSD, Linux’s Hostapd

 Leaked source: Broadcom, MediaTek (home routers)

 Closed source: Windows, Apple, …

 Professional equipment: Aerohive, Aironet

16

Discovered several issues!

Missing downgrade checks

1. MediaTek & Telenet don’t verify selected cipher in message 2

2. MediaTek also ignores supported ciphers in message 3

17
 Trivial downgrade attack against MediaTek clients

Windows 7 targeted DoS

18

APClient Client 2

…

Windows 7 targeted DoS

19

APClient Client 2

…

PoC @
github.com/vanhoefm/blackhat17-pocs

Broadcom downgrade

Broadcom cannot distinguish message 2 and 4

 Can be abused to downgrade the AP to TKIP

Hence message 4 is essential in preventing downgrade attacks

 This highlights incorrect claims in the 802.11 standard:

20

“While Message 4 serves no cryptographic purpose, it serves as an

acknowledgment to Message 3. It is required to ensure reliability and

to inform the Authenticator that the Supplicant has installed the PTK and

GTK and hence can receive encrypted frames.”

OpenBSD: client man-in-the-middle

Bug in state machine of AP  we also inspected client:

State machine missing!

21
 Man-in-the-middle against client

OpenBSD: client man-in-the-middle

22

OpenBSD: client man-in-the-middle

23

OpenBSD: client man-in-the-middle

24

OpenBSD: client man-in-the-middle

25

OpenBSD: client man-in-the-middle

26

PoC @
github.com/vanhoefm/blackhat17-pocs

More results

See Black Hat & AsiaCCS paper4:

 Benign irregularities  fingerprint

 Permanent DoS attack against
Broadcom and OpenBSD

 DoS attack against Windows 10,
Broadcom, Aerohive

 Inconsistent parsing of supported
cipher suite list

 …

27

Future work!

Current limitations:

 Amount of code coverage is unknown

 Only used well-formed (albeit invalid) packets

 Test generation rules applied independently

But already a promising technique

 Black-box testing mechanism: no source code needed

 Fairly simple handshake, but still several logical bugs!

28

Conclusion: avoiding logical bugs

What helps:

 Try to generalize known bugs (in your/other products)

 Model-based testing (e.g. this presentation)

 Write rigorous requirements (specification) and review them

 Detailed code reviews (e.g. by domain experts)

Does not help:

 Standard code review (only detects common mistakes)

 Traditional static or dynamic testing

29

Securely Implementing

Network Protocols: Detecting

and Preventing Logical Flaws

Mathy Vanhoef (KU Leuven)

Black Hat Webcast, 24 August 2017

@vanhoefm

References

1. M. Vanhoef and F. Piessens. Key Reinstallation Attacks: Forcing Nonce Reuse in WPA2. In CCS, 2017.

2. M. R. Albrecht, K. G. Paterson and G. J. Watson. Plaintext Recovery Attacks Against SSH. In IEEE S&P, 2009.

3. E. Poll and A. Schubert. Verifying an implementation of SSH. In WITS, 2007.

4. M. Vanhoef, D. Schepers, and F. Piessens. Discovering Logical Vulnerabilities in the Wi-Fi Handshake Using Model-Based
Testing. In ASIA CCS, 2017.

5. M. Kikuchi. How I discovered CCS Injection Vulnerability (CVE-2014-0224). Retrieved 20 August 2017 from
http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html

6. M. Vanhoef and F. Piessens. Predicting, Decrypting, and Abusing WPA2/802.11 Group Keys. In USENIX Security, 2016.

7. D. Bongard. Offline bruteforce attack on WiFi Protected Setup. In Hack Lu, 2014.

8. Beurdouche et al. A Messy State of the Union: Taming the Composite State Machines of TLS. In IEEE S&P, 2015.

9. J. de Ruiter and E. Poll. Protocol State Fuzzing of TLS Implementations. In USENIX Security, 2015.

10. D. Adrian et al. Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice. In CCS, 2015.

11. T. Duong and J. Rizzo. Here come the xor ninjas. In Ekoparty Security Conference, 2011.

12. B. Möller, T. Duong, and K. Kotowicz. This POODLE Bites: Exploiting The SSL 3.0 Fallback. In Google Security Blog, 2014.

13. N. J. Al Fardan and K. G. Paterson. Lucky thirteen: Breaking the TLS and DTLS record protocols. In IEEE S&P, 2013.

31

http://ccsinjection.lepidum.co.jp/blog/2014-06-05/CCS-Injection-en/index.html

