
AppSec: Overview, Deep Dive,

and Trends

Bromium Confidential

• Jared DeMott
• Security Researcher

• E.g. life long learner

• Fuzzing

• Code auditing

• Reversing

• Exploitation

• Author
• Fuzzing book and various articles

• Speaker
• Here, and lots of other venues

• Trainer
• Check out my full two day Class

• Next at BlackHat USA

• Friend
• Drop me a line

Who am I?

Bromium Confidential

Secure Development Lifecycle

Src code

checking

in build

Fuzzing

Manual

Review

and

Pentest

New VS

better than

old

Bromium Confidential

Push Security to the Left

• Before you code!

• Historically: an over focus on Testing

• Under focus on Threat Modeling

• Getting Devs, Testers, and Operational folks together

• Especially for todays cloud applications

Bromium Confidential

Threat Modeling Software

• Risk based threat models
• Apps of LOW, MED, HIGH require different amounts of

assurance
• As an example, LOW apps might be the cafeteria menu.

• The use of static analysis may be enough

• MED applications, perhaps B2B web apps, require static and
dynamic analysis

• HIGH, consumer desktop products, might require all the prior,
plus a more expensive pentest and manual analysis.

• Threat models help determine what we are testing for
• Formal tools available but not widely used

• http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx

http://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx

Bromium Confidential

Design Review via DFD

HTTP(S) Connection Database Connection

User

Check

for

HTTPS

Look-

up User

Check

pass-

word

Database

submit login

Redir to HTTPS

HTTPS Query passwd salt for user

Return salt

Salt is valid
Q for user w/

salted passwd

Return User record

Invalid user

Invalid passwd

Login Accepted!
Auth

failed

login failed

Bromium Confidential

• Do all three if

budget allows and

threat dictates

• Static

• Dynamic

• Manual

Static Dynamic Manual

Scans all code for known buggy
patterns X

Hammers attack surface using
heuristics to find bugs X

Finds tricky design flaws and
implementation bugs X

Lower cost X X

Med cost X X

Higher cost X

Miss Bugs Yes Yes Yes

False Positive Yes Not usually Maybe

Bromium Confidential

Functional View of Static Analysis

Source

Code

Raw

Results

Human Review Findings

Rules (preinstalled and custom)

Perform Analysis

Fix

Bromium Confidential

Quickly Finds Bugs for

which a Known Pattern Exists

• Buffer Overflow
• Untrusted data written outside of some data structure

• Allowing the attacker to hijack code execution

char buf[1024];

sprintf(buf, “%s@%s”, name, domain);

char buf[100];

for(int i=0; i<=100; i++)

buf[i]=i;

char * buf = malloc(100);

strncpy(buf, argv[1], strlen(argv[1]));

printf(argv[1]);

Banned.h

shellcode

Bromium Confidential

Fuzzing

Bromium Confidential

File Fuzzing Demo with Peach

Peach

Iexplore.exe

Peach Agent

Publisher

Engine

Logger

Agent

Manager

windbg

GIFCreate

Run

Monitor

Bromium Confidential

• Look for hard to spot implementation bugs and architectural
flaws

Manual Code Review

• Null ptrs

• Typos on variables

• Forgotten default switch
case

• Uninitialized memory

• Incorrect pointer usage

• Returning locally scoped
variable

• Exception handling
mistakes
• Out of state alloc/free

• TOCTOU race conditions
• Applies to files, shared

memory, etc.

• Concurrency issues

• Unchecked return values

• Out of date compilers

• Ignored warnings

• Failure to opt into
protections

• Old STL

Bromium Confidential

• Common in browsers
• Because JavaScript events can delete an object at unexpected times, while back in

the C++ of the browser – the object is about to get used again
• And this bug can occur in other types of applications as well of course

• Chrome
• Probably has the best sandbox, but look out for kernel exploits, and sandbox escapes

• The usual bugs as well, but less of them

• Safari
• Webkit…Google just forked to their blink… not thinking that will help Apples security posture

• Internet Explorer
• Plenty of UAF examples in metasploit

• Firefox
• Bugzilla is helpful for finding new bugs to explore

• Opera
• Security through obscurity? Seriously, don’t use it

• RWX in mem, bugs galore, etc. bad news

Example 1: Use-after-Free (UAF)

Bromium Confidential

attacker data

Use-after-Free

obj a

methods b,c,d

Memory

Frees somehow

1. ab() is called by application(e.g. original obj used after freed)

2. But expected virtual pointer is not present

3. Instead program dereferences attacker controlled data (func ptr)

4. Which may allow any of the three primitives: R/W/X

obj * a 

attacker allocates obj t

Bromium Confidential

• Examples:

• Chrome CVE-2013-2871

• Firefox CVE-2013-1704

• Internet Explorer CVE-2013-1311

• Safari CVE-2011-3443

• Opera SVG CVE-2013-1638

Use-After-Free

Remote Code Executions

Bromium Confidential

Webkit UAF: Prior Chrome Bug
setOuterText in HTMLElement.cpp

Non-ref ptr

defined

Uh oh.

Possible

UAF

Bromium Confidential

UAF: Example -- Fixed

Now uses

reference

pointer

Bromium Confidential

Example 2: Double Fetch

Time-of-check to time-of-use race condition

Once OK

Again bad!

Bromium Confidential

Double Fetch

http://vexillium.org/dl.php?syscan_slides.pdf

Bromium Confidential

Another Double Fetch, with Fix

__try {
ProbeForWrite(*UserPtr, sizeof(STRUCTURE), 1);
(*UserPtr)->Field = 0;

} except {
return GetExceptionCode();

}

vs.

PSTRUCTURE Pointer;
__try {
Pointer = *UserPtr;

ProbeForWrite(Pointer, sizeof(STRUCTURE), 1);
Pointer->Field = 0;

} except {
return GetExceptionCode();

}

Fetch Once

Good

Fetch twice…

bad

Bromium Confidential

• Do you have a secure@company.com?

• Who will respond to it?

• How quickly do you commit to fixing bugs for

customers?

• Likely depends on realities

• Severity of bug

• Ease of repair

• etc

Patch

mailto:secure@company.com

Bromium Confidential

• SDL has “caught on”
• At least in bigger organizations

• Thus, well made software has less “lame bugs”

• But…. software is still getting more complex
• Newer types of interesting bugs being found

• 3rd party libraries
• If you were going to try and pwn Safari

• audit closed source html parser?
• No.

• Or grep open source webkit for “FIXME”?
• YES!

• Better analysis on why bugs were missed
• Lot of discussion around why tools/techniques missed heartbleed

Trends

Bromium Confidential

Q&A will happen at the very end

http://labs.bromium.com

@bromium; @jareddemott

