

# Applying Machine Learning to Network Security Monitoring

Alex Pinto
Chief Data Scientist | MLSec Project
@alexcpsec
@MLSecProject

### whoami

- Almost 15 years in Information Security, done a little bit of everything.
- Most of them leading security consultancy and monitoring teams in Brazil, London and the US.
  - If there is any way a SIEM can hurt you, it did to me.
- Researching machine learning and data science in general for the 2 years or so and presenting about its intersection with Infosec for more then an year now.
- Created MLSec Project in July 2013

## Agenda

- Definitions
- Network Security Monitoring
- PoC || GTFO
- Feature Intuition
- MLSec Project



#### **Big Data + Machine Learning + Data Science**



#### **Big Data + Machine Learning + Data Science**



- amachine learning is
- Q machine learning is Google Search
- amachine learning is the future
- a machine learning is a branch of which scientific discipline
- amachine learning is hard
- machine learning is not as cool as it sounds
- machine learning is just statistics
- Q data science is
- Q data science is Google Search
- Q data science is statistics on a mac
- q data science is the new black

## **Big Data**





#### Ambari

Provisioning, Managing and Monitoring Hadoop Clusters







Norkflow

Oozie



Scripting

Pig









SQLQuery



Columnar Store Hbase

YARN Map Reduce v2

Statistics

Distributed Processing Framework

R Connectors



Log Collector

Flume

Sqoop

**HDFS** 

Hadoop Distributed File System







## (Security) Data Scientist

• "Data Scientist (n.): Person who is better at statistics than any software engineer and better at software engineering than any statistician."

-- Josh Willis, Cloudera



Data Science Venn Diagram by Drew Conway

#### **Kinds of Machine Learning**

- "Machine learning systems automatically learn programs from data" – CACM 55(10) Domingos 2012
- Supervised Learning:
  - Classification (NN, SVM, Naïve Bayes)
  - Regression (linear, logistic)



- Unsupervised Learning :
  - Clustering (k-means)
  - Decomposition (PCA, SVD)



## **Classification Example**





VS





#### **Considerations on Data Gathering**

- Models will (generally) get better with more data
  - Always have to consider bias and variance as we select our data points
  - Am I selecting the correct features to describe the entities?
  - Have I got a representable sample of labeled data I can use?
- "I've got 99 problems, but data ain't one"



Domingos, 2012



Abu-Mostafa, Caltech, 2012

#### **Security Applications of ML**

- Fraud detection systems (not security):
  - Is what he just did consistent with past behavior?
- Network anomaly detection:
  - Good luck finding baselines
  - ML is a bit more then rolling averages
- User behavior anomaly detection:
  - My personal favorite, 2 new companies/day
  - Does fraud detection follow the CLT?

SPAM filters



#### **Considerations on Data Gathering (2)**

- Adversaries Exploiting the learning process
- Understand the model, understand the machine, and you can circumvent it
- Any predictive model on InfoSec will be pushed to the limit
- Again, think back on the way SPAM engines evolved

Posit: "Intrinsic features of malicious actors cannot be masked as easily as behavioral features"



# **Network Security Monitoring**



### **Kinds of Network Security Monitoring**

- Alert-based:
  - "Traditional" log management
  - SIEM
  - Using "Threat Intelligence" (i.e blacklists) for about a year or so
  - Lack of context
  - Low effectiveness
  - You get the results handed over to you

- Exploration-based:
  - Network Forensics tools (2/3 years ago)
  - ELK stacks
  - High effectiveness
  - Lots of people necessary
  - Lots of HIGHLY trained people
  - Much more promising
- Big Data Security Analytics (BDSA):
  - Basically exploration-based monitoring on Hadoop and friends
  - Sounds kind of painful for the analysts involved

## **Alert-based + Exploration-based**



# Using robots to catch bad guys



#### PoC || GTFO

- We developed a set of algorithms to detect malicious behavior from log entries of firewall blocks
- Over 6 months of data from SANS DShield (thanks, guys!)
- After a lot of statistical-based math (true positive ratio, true negative ratio, odds likelihood), it could pinpoint actors that would be <u>13x-18x</u> more likely to attack you.
- Today reducing amount of clutter in log files to less then 0.5% of actors worth investigating, and having less than 20% false positives in participant deployments.

## **Feature Intuition: IP Proximity**

- Assumptions to aggregate the data
- Correlation / proximity / similarity BY BEHAVIOR
- "Bad Neighborhoods" concept:
  - Spamhaus x CyberBunker
  - Google Report (June 2013)
  - Moura 2013
- Group by Geolocation
- Group by Netblock (/16, /24)
- Group by BGP prefix
- Group by ASN information



# Map of the Internet

- (Hilbert Curve)
- Block port 22
- 2013-07-20



## **Feature Intuition: Temporal Decay**

- Even bad neighborhoods renovate:
  - Attackers may change ISPs/proxies
  - Botnets may be shut down / relocate
  - A little paranoia is Ok, but not EVERYONE is out to get you (at least not all at once)
- As days pass, let's forget, bit by bit, who attacked
- Last time I saw this actor, and how often did I see them



## Feature Intuition: DNS features

- Who resolves to this IP address pDNS data + WHOIS
  - Number of domains that resolve to the IP address
  - Distribution of their lifetime
  - Entropy, size, ccTLDs
  - Registrar information

- Reverse DNS information
- History of DNS registration
- (Thanks, Farsight Security!)



## Training the Model

- YAY! We have a bunch of numbers per IP address/domain!
- How do you define what is malicious or not?
  - Curated indicator feeds
  - OSINT indicator feeds with some help from statistical-based curating
  - Top X lists of visted sites.
  - Feedback from security tools (if you trust them)



#### **MLSec Project**

- Working with several companies on tuning these models on their environment with their data
- Looking for participants and data sharing agreements

Visit <a href="https://www.mlsecproject.org">https://www.mlsecproject.org</a>, message @MLSecProject or just e-mail me.



## **MLSec Project - Current Research**

- Inbound attacks on exposed services (BlackHat 2013):
  - Information from inbound connections on firewalls, IPS, WAFs
  - Feature extraction and supervised learning
- Malware Distribution and Botnets (hopefully BlackHat 2014):
  - Information from outbound connections on firewalls, DNS and Web Proxy
  - Initial labeling provided by intelligence feeds and AV/anti-malware
  - Some semi-supervised learning involved
- User Impersonation in Web Applications (early days):
  - Inputs: logs describing authentication attempts (both failed and successful), click stream data
  - Segmentation of users by risk level

#### Thanks!

Q&A at the end of the webinar

Alex Pinto
@alexcpsec
@MLSecProject
https://www.mlsecproject.org/



<sup>&</sup>quot; Essentially, all models are wrong, but some are useful."