
A tale of mobile threats 

Vincenzo Iozzo 

Director of Security Engineering 
Trail of Bits, Inc 



In which I blame people 

Part 1 



That’s how we deal with mobile 





How does offense work? 

•  Attacker’s mindset 

•  Gaining access 

•  Keeping access/stealing data 



First problem: spot the difference 



Black swans? What’s that? 

A very interesting research result that is unlikely 
to happen in real life 



Why black swans exist? 

“Machines can remain vulnerable longer than 
you can remain sane” 

 
The security community is fixated on 

persistance 
 
A lot of people forget the mantra: “whoever 

scores is right” 
 
Technical elegance is highly valued 



Black swans and attacker math 

Attackers are resource-constrained: “The 
Exploit Intelligence Project” (Dan Guido) 

 
Attackers are rational human beings 
 
Attackers will take a given exploitation path 

IFF no cheaper paths are available 



Exploitation paths 



A rational attacker 



A black swan 



Practical example 

A rational attacker 

A black swan (AKA: are you nuts?) 



So… 

VS 

1 0 



Unless..  

The ROI on a black swan is higher, for some 
definition of “return” 

 
Flame md5 collision attack comes to mind 
 
Therefore our graph is weighted 



Weight function 

That’s very hard to calculate in the general case 
 
Some examples in “Attacker Math 101” (Dino Dai Zovi) 
 
A bit out of scope here 
 
But we can usually draw a line easily 



What if two paths are equally 
cost effective? 



Gaining access.. 

It’s all about programming a “weird 
machine” (Sergey Bratus et al.) 
 
 
 

 



The weird machine 

 
 In short: “a machine that executes an 

 unexpected series of instructions” 
 
 



By examples 

•  ROP 

•  JIT Spraying – Dion Blazakis  

•  SpiderMonkey Bytecode Hijacking – Thomas 
Dullien 

•  JIT code hijacking – Chris Rohlf and Yan 
Ivnitskiy  

•  … 



Exploitation 

 
 
 
Exploitation is setting up, instantiating, and 

programming the weird machine - Thomas 
Dullien 

 
 



Controlling the machine 

•  You need write primitives 

•  You need infoleaks/memleaks 
 
For both you need some degree of control 
over the application.  
 
It’s either pure data or you can directly 
influence the application state (eg: through 
an interpreter of some kind) 



Me no like exploits 

This process is challenged in a few ways:  
•  Negate the initialization (fix bugs) 
•  Make the setup hard (heap/stack mitigations, 

ASLR) 
•  Make it hard to put together ‘weird 

instructions’ (ASLR, DEP, JIT hardening) 
•  Reduce/Neutralize the effects of a running 

weird machine (sandboxing, code signing) 
•  More to come in the future.. 

 



Get to the data/persistence 

•  How hard is to get your code on a target? 
•  How far away is the data you care for from 

you? 



For future reference.. 

So here’s the thing:  
 In a few years everything an attacker cares 
for will be inside a browser/mobile app 

 
Do sandboxes help with that? *NO* 
 
 
 
 
 



Let’s wrap up 

Attacker’s mindset: take the most cost-effective 
path 

 
When it comes to exploitation the most cost-

effective path is: 
 1) As close as possible to your data  
 2) Reduces as much as possible the need for 
multiple bugs/exploits 

   3) Reduces maintenance cost  



In which I actually talk about 
mobile 

Part 2 



Drive-bys 

Mobile	  Town	   Desktop	  City	  



Too few and too many 

~8%	  of	  total	  web	  traffic	  
comes	  from	  mobile	  devices	  

Breakdown	  by	  version	  /	  features	  
(+	  varying	  rates	  of	  feature	  support)	  



Like Facebook.. 



Takeaway 

Drive-bys don’t matter and realistically never 
will 

 
Hard to get anything useful (contrary to 

dekstops) out of them 
 
Hard to run the attack in the first place 
 
The web is the future of the desktop, apps are 

the future of mobile = attackers behave 
accordingly 

 



Malware 

Apple	  App	  Store	   Google	  Marketplace	  



One of the reasons 



Malware lasts long on Android 

0% 

10% 

20% 

30% 

40% 

50% 

60% 

70% 

80% 

90% 

100% 

3/1/12	   4/1/12	   5/1/12	   6/1/12	   7/1/12	   8/1/12	  

4.x	  -‐	  ICS	  /	  JB	  

3.x	  -‐	  Honeycomb	  

2.3	  -‐	  Gingerbread	  

2.2	  -‐	  Froyo	  

2.1	  -‐	  Eclair	  

1.X	  -‐	  Cupcake	  /	  Donut	  

Android	  Exploit	   Time	  to	  Patch	  50%	  

Exploid	  (2.1)	   294	  days	  

RageAgainstTheCage	  (2.2.1)	   >	  240	  days	  



Not so much on iOS 

Vulnerability	   Exploit	   Patch	  Availability	  

Malformed	  CFF	   Star	  (JailbreakMe	  2.0)	   10	  days	  

T1	  Font	  Int	  Overflow	   Saffron	  (JailbreakMe	  3.0)	   9	  days	  



AppStore vs Google Play 

Apple enforces accountability 
 
Sandbox escape: Android > iOS 
 
Fragmented user-base = the investment lasts 
longer 
 
On Android privesc are enough to cause  

troubles 
 
That being said: jailbroken iOS  = Android 
 



Malware - takeaway 

•  Does only matter on Android and jailbroken 
iOS 

•  It scales, it’s easy and it lasts 

•  Can this be fixed? Yes, Apple did 

 



App specific 

Android NDK can open up this attack surface 
a lot 

 
Interesting because applications are likely less 

audited than system code 
 
But more importantly: interesting data will be 

inside the app. Why go anywhere else?  
 
Expect them in the future! 
 



More “smart” in phone? 



Enter baseband 



A few words on it 

•  Most of the code in there is old (1990 old) 

•  Based on the assumption that the actors 
are trusted 

•  Most of the research has been done by Ralf 
Philipp Weinmann 

•  His research led to bug fixing and some 
mitigations 



Baseband weird machines 

Increased attention being paid to bugs in 
there 

 
Still a very big surface with few (known) actors 
 
Big state machine based on a giant interface, 

so hard to fuzz 
 
Need profound knowledge to find certain 

bugs  



Baseband weird machine 2 

Very few mitigations in place  
 
Still most of the heap metadata exploitation is 

possible (eg: write4 primitives on Infineon) 
 
No ASLR, no “sandboxes” 
 
Remote: control through data only 
 
Local: “interpreter” (AT commands) 



Baseband - persistence 

Good luck with forensics/IR 
 
Depending on how the App processor 

interacts with the BB it might lead to full-
device compromise 

 
Regardless: access to phone calls, SMS and 

data 



Attack scenarios 

•  Remote exploit to steal/alter/make  sms/
data/phone calls 

 
•  App remote-> BB local rootkit 

•  BB remote -> BB local  rootkit 
 
•  DDos in case of crisis? 



So .. 

1)  High ROI  
 
2)  Very few mitigations 

3)  Detection is hard 
 
Great target for motivated attackers! 



NFC 

That’s complicated… 
 
 



NFC - capabilities 

Can potentially lead to device compromise 
through malformed packets at protocol level – 
device proximity 
  
Can lead to device compromise at 
‘application level’ – tag proximity 

Steal data – roughly 1.5 meters with custom 
hardware  
 
Auth bypass issues  



First case 

Not very viable.. 
 
On the flipside, you can potentially get huge 

access to the device 
 
Most likely a black swan 



Second case 

You can compromise the device by using tags 
(simple stickers) -> do not need proximity 

 
 



Second case 

You can either run your exploit for browser and 
stuff (might require some kind of permission) 

 
 Compromise through tag parsing! 
 
Mobile Pwn2own 2012 was won using this 

approach 
 
This is more interesting! Rational black swan 
 



In which I make statements 

Part 3 



Conclusion 

If you don’t know *what* you’re protecting, 
you’ll fail  

 
Likewise if you don’t know what you’re 

protecting *against*, you’ll fail 
 
You don’t need a horde of code auditors & 

policy people, you need a CEO (chief 
exploitation officer)  

 



Specific to mobile 

Worry more about the “phone” than the 
“computer” 

 
App sandboxes are great to make persistence 

hard, way less so for data exfiltration 
 
Android is bad, you don’t want that in your 

company 
 
NFC is/will be more a “physical” security issue 

than an Infosec one 
 



In which you can ask 
questions or  insult me 

Part 5 



   Thanks! 
      Questions? 
         vincenzo@trailofbits.com 


