Black Hat Webcast Series

C/C++ AppSec in 2014

X LesfSR

Who Am |

Chris Rohlf

Leaf SR (Security Research) - Founder / Consultant
BlackHat Speaker { 2009, 2011, 2012}

BlackHat Review Board Member

http://leafsr.com @chrisrohlf info@leafsr.com

Agenda

What is Application Security (AppSec) in C/C++7?
C/C++ Vulnerabilities: Prevention, Discovery, Remediation

Memory corruption and runtime protections

Conclusion

What is AppSec?

AppSec is a general term that means preventing, detecting, and
fixing security vulnerabilities in an application

Secure design, code audits, penetration testing, fuzzing, threat

modeling, and security patches are just a few activities that can fit
under this umbrella

AppSec is normally part of a well developed SDLC process

AppSec and C/C++

C/C++ is still ubiquitous in enterprise and desktop systems alike

Mobile Applications, Financial Systems, Databases,
Browsers, Browser Plugins, Document Readers

The term AppSec is commonly associated with web apps, web
frameworks and mobile development [1]

AppSec frameworks and guidelines sometimes ignore the unique
security issues applications developed in C/C++ must solve

[1] An informal poll showed the word AppSec is most associated with XSS, OWASP and “Vendor Lunches”

S LeafsR

C/C++ Vulnerabilities

C/C++ are a lot different than higher level languages

There is very little language runtime available to the developer to
fall back on when faced with complexity or an error condition

Many unique security issues come from the underlying design
principles that define these languages

C/C++ Vulnerabilities

Static typing system (weakly enforced)
Type conversion, type truncation

Pointers, pointers to pointers, pointers to arrays of pointers,

pointers to lists of arrays of pointers to pointers... pointers

Manual string copies, size calculations, concatenation, wide char
Raw memory management

No runtime provided garbage collection

C/C++ Vulnerabilities

Your system understands three basic primitives
Read, Write, Execute

Memory corruption vulnerabilities give an attacker control or
partial influence over these RWX primitives

stack overflows, heap overflows, integer overflows, type confusion,
use after free, double free, uninitialized memory, integer
truncation, out of bounds read/write, TOCTOU, race conditions

LeafSR

C/C++ Vulnerabilities

Many of these bug classes are familiar to C/C++ developers

Modern protections make many of them difficult to exploit by
reducing predictability

Attackers adapt to bug classes that are easier to exploit
generically or have reusable techniques across different

applications and systems

Type Confusion

When a type identifier of a data structure becomes out of sync
with that data the potential for a type confusion is there

Result: treat an object of type A as if it were of type B

Common in applications that exchange complex binary formats
such as virtual machine byte code (Flash), objects or structures
over a local IPC mechanism (Chrome)

Structures with tagged unions are good places to start auditing

Type Confusion

Type confusion in a C++ object with unsafe usage of
the reinterpret_cast operator

class Widget {
public:
Widget () { 1}
~Widget () { }
virtual void foo () { }

b

class Other {
public:
Other () { i = 0x41414141; }
~Other () { }
int 1i;

Y

volid someFunc () {
Other *o = new Other();
Widget *b = reinterpret cast<Widget
b->foo () ;
delete o7

Use After Free

- Accessing an object after it has been deleted or free'd

Buffers *someFunc (char *str) {
char *a = (char *) malloc(1024);
memcpy (a, str, 1023);
doSomeStuff (a):;
free(a);
doSomeOtherStuff (str) ;
memcpy (m_bufs[0], a, 1023);
return m bufs;

In C++ usually the result of poor object lifecycle management

Reference counting and garbage collection is one example

S LeafsR

Use After Free (cont.)
e Z:EE::J [:; :::::::) 0x12345678

7
p

free
_ J

4 0x12345678
IIEEI' [::::::
Pl = new P10Obj(); 7
PO / .
delete P1; [free

J

= new P20b7j ();

... ‘\\\\\\\\ 0x12345678
P1->doSomething () ; P2 l
~

-~

- J

Use After Free (cont.)

Complex applications contain many different components that
must interact by exchanging objects of different types

There must be a contract between these components that
specifies a set of rules that will be followed for handling these
objects safely

When these rules are violated we often see use-after-free
patterns emerge

Certain design patterns (e.g. JavaScript engine) make exploiting
use-after-free vulnerabilities easier

%\ LeafSR

Use After Free (cont.)

Common use-after-free patterns include
Mixing smart pointers and raw pointers

Implementing a class without a matching copy constructor,
assignment operator or destructor

Shallow copies that don't increment reference counts or
copy whole objects

Vulnerability Prevention

It is likely that your mobile app uses a closed source 3rd party
library written in C

Keeping these up to date with relevant security patches is
important

libpng, libjpeg, openss| are a few of examples

Yes, they will contain vulnerabilities too. But it is still better
than writing your own version

Vulnerability Prevention

Avoid common vulnerability patterns
Manual string concatenation
Mixing raw pointers and smart pointers
Allowing implicit conversions of signed/unsigned integers
Not defining hard limits on size and length values

Yes your protocol has a 32bit length member, do you
really expect to transfer 4GB of data in a message?

Vulnerability Prevention

« Prevent the use of unsafe API calls
« Microsofts banned.h

+ Custom GCC pOiSOﬂ Pragma - https://github.com/leafsr/gcc-poison

#fpragma GCC poison strcpy

$ gcc -o string string.c

string.c: In function ‘main’:
string.c:8:2: error: attempt to use poisoned

\

strcpy”

% LeafSR

Vulnerability Prevention

Developer education

Study old vulnerabilities in your code reported by outside
researchers or found by fuzzers

There is often a pattern to be extracted

NIH? Don’t reinvent the wheel, use an existing open source
library if possible

Vulnerability Discovery

Manual source code auditing with an IDE

Time consuming and tedious but results in deeper and more
subtle findings

Start by looking at previously patched vulnerabilities in an
application, identify the pattern, and find more instances like it

Manual code audits give you a clearer root cause analysis of
vulnerabilities in your applications, which allows you to better
understand their severity

Vulnerability Discovery

Sending malformed data to an application

with the intent of monitoring for unexpected I“I

behavior such as an exception or a crash -
PRESS START

Fuzzing: cheap, fast, effective... shallow

Develop custom fuzzers or adapt open source ones to run
against your code

Start by mutating existing unit-tests

Hardware is cheap, fuzz 24/7 against auto-generated builds
of vour source tree

\%\\ LeafSR

1/

Vulnerability Discover

clang-analyzer
Source level analysis

Great for finding certain classes of bugs but requires your
code be compiled with clang

Address Sanitizer

Use in combination with fuzzing

Runtime Protections

The issues faced by compiled C/C++ applications are very
different than those in a web framework

Exploiting memory corruption vulnerabilities on a modern
operating system requires defeating memory protections

Defeating these protections takes time and resources for an
attacker, especially when they are combined

Runtime Protections

+ ASLR - Address Space Layout Randomization
-+ GCC: -tPIC -fPIE
+ Visual Studio: /DYNAMICBASE
Ensures your process space is randomized at runtime

» This will reduce the reliability of exploits against your code that
use deterministic properties of your application

Runtime Protections

- DEP - Data Execution Prevention
- Ensures that memory not marked executable cannot be executead

- Legacy systems may have to emulate this in software

Detfensive Design

The low level power and control of C/C++ gives us an
opportunity to make exploit writers work for their money

Study exploits for your application or one of a similar design
Reduce predictability and deterministic behavior
Examples: PartitionAlloc in Chrome, JIT hardening

Sandboxes can help limit access by reducing privileges and
separating resources from unprivileged components

Legacy Code

Legacy code on a legacy system

If the application can be run in
a sandbox this is likely to
result in the best security ROI

+ Audit code for older / pre-
SDLC bugs (strcpy, sprintf,

gets and so on)

Fuzz, patch, fuzz, patch

| egacy Code

T T R Y AR
STy ER T Il I CRRRVRRInAG

PP ——

Legacy code on a modern system

(I think these are facebooks servers)

Even older code benefits from operating system supplied
protection for free, but this may require compatibility testing

Use a newer compiler to benefit from compiler added
protections (stack cookies, SafeSEH, SEHOP)

MSVC 2010 or newer

Conclusion

Audit, Fuzz, Audit, Fuzz, Audit, Fuzz ...

Enable any memory protections made available by the operating
system for free, investigate which compiler protections you aren’t
currently utilizing in your code

Stay up to date with attacker trends to help prioritize your efforts

Study existing exploits and harden your application as necessary
to reduce deterministic behavior

chris.rohlf @ leafsr.com

http://leafsr.com

