
Black Hat Webcast Series

C/C++ AppSec in 2014

Who Am I
• Chris Rohlf

• Leaf SR (Security Research) - Founder / Consultant

• BlackHat Speaker { 2009, 2011, 2012 }

• BlackHat Review Board Member

• http://leafsr.com @chrisrohlf info@leafsr.com

Agenda

• What is Application Security (AppSec) in C/C++?

• C/C++ Vulnerabilities: Prevention, Discovery, Remediation

• Memory corruption and runtime protections

• Conclusion

What is AppSec?

• AppSec is a general term that means preventing, detecting, and
fixing security vulnerabilities in an application

• Secure design, code audits, penetration testing, fuzzing, threat
modeling, and security patches are just a few activities that can fit
under this umbrella

• AppSec is normally part of a well developed SDLC process

AppSec and C/C++
• C/C++ is still ubiquitous in enterprise and desktop systems alike

• Mobile Applications, Financial Systems, Databases,
Browsers, Browser Plugins, Document Readers

• The term AppSec is commonly associated with web apps, web
frameworks and mobile development [1]

• AppSec frameworks and guidelines sometimes ignore the unique
security issues applications developed in C/C++ must solve

[1] An informal poll showed the word AppSec is most associated with XSS, OWASP and “Vendor Lunches”

C/C++ Vulnerabilities

• C/C++ are a lot different than higher level languages

• There is very little language runtime available to the developer to
fall back on when faced with complexity or an error condition

• Many unique security issues come from the underlying design
principles that define these languages

C/C++ Vulnerabilities
• Static typing system (weakly enforced)

• Type conversion, type truncation

• Pointers, pointers to pointers, pointers to arrays of pointers,
pointers to lists of arrays of pointers to pointers… pointers

• Manual string copies, size calculations, concatenation, wide char

• Raw memory management

• No runtime provided garbage collection

C/C++ Vulnerabilities

• Your system understands three basic primitives

• Read, Write, Execute

• Memory corruption vulnerabilities give an attacker control or
partial influence over these RWX primitives

• stack overflows, heap overflows, integer overflows, type confusion,
use after free, double free, uninitialized memory, integer
truncation, out of bounds read/write, TOCTOU, race conditions

C/C++ Vulnerabilities

• Many of these bug classes are familiar to C/C++ developers

• Modern protections make many of them difficult to exploit by
reducing predictability

• Attackers adapt to bug classes that are easier to exploit
generically or have reusable techniques across different
applications and systems

Type Confusion

• When a type identifier of a data structure becomes out of sync
with that data the potential for a type confusion is there

• Result: treat an object of type A as if it were of type B

• Common in applications that exchange complex binary formats
such as virtual machine byte code (Flash), objects or structures
over a local IPC mechanism (Chrome)

• Structures with tagged unions are good places to start auditing

Type Confusion
• Type confusion in a C++ object with unsafe usage of

the reinterpret_cast operator
class Widget {
 public:
 Widget() { }
 ~Widget() { }
 virtual void foo() { }
}; !
class Other {
 public:
 Other() { i = 0x41414141; }
 ~Other() { }
 int i;
}; !
void someFunc() {
 Other *o = new Other();
 Widget *b = reinterpret_cast<Widget *>(o);
 b->foo();
 delete o;
}

Use After Free
• Accessing an object after it has been deleted or free’d

!

!

!

• In C++ usually the result of poor object lifecycle management

• Reference counting and garbage collection is one example

!
Buffers *someFunc(char *str) {
 char *a = (char *) malloc(1024);
 memcpy(a, str, 1023);
 doSomeStuff(a);
 free(a);
 doSomeOtherStuff(str);
 memcpy(m_bufs[0], a, 1023);
 return m_bufs;
}

Use After Free (cont.)

Use After Free (cont.)
• Complex applications contain many different components that

must interact by exchanging objects of different types

• There must be a contract between these components that
specifies a set of rules that will be followed for handling these
objects safely

• When these rules are violated we often see use-after-free
patterns emerge

• Certain design patterns (e.g. JavaScript engine) make exploiting
use-after-free vulnerabilities easier

Use After Free (cont.)

• Common use-after-free patterns include

• Mixing smart pointers and raw pointers

• Implementing a class without a matching copy constructor,
assignment operator or destructor

• Shallow copies that don’t increment reference counts or
copy whole objects

Vulnerability Prevention
• It is likely that your mobile app uses a closed source 3rd party

library written in C

• Keeping these up to date with relevant security patches is
important

• libpng, libjpeg, openssl are a few of examples

• Yes, they will contain vulnerabilities too. But it is still better
than writing your own version

Vulnerability Prevention
• Avoid common vulnerability patterns

• Manual string concatenation

• Mixing raw pointers and smart pointers

• Allowing implicit conversions of signed/unsigned integers

• Not defining hard limits on size and length values

• Yes your protocol has a 32bit length member, do you
really expect to transfer 4GB of data in a message?

Vulnerability Prevention
• Prevent the use of unsafe API calls

• Microsofts banned.h

• Custom GCC poison pragma - https://github.com/leafsr/gcc-poison

#pragma GCC poison strcpy  
 
 
$ gcc -o string string.c

string.c: In function ‘main’:  
string.c:8:2: error: attempt to use poisoned “strcpy”

Vulnerability Prevention

• Developer education

• Study old vulnerabilities in your code reported by outside
researchers or found by fuzzers

• There is often a pattern to be extracted

• NIH? Don’t reinvent the wheel, use an existing open source
library if possible

Vulnerability Discovery
• Manual source code auditing with an IDE

• Time consuming and tedious but results in deeper and more
subtle findings

• Start by looking at previously patched vulnerabilities in an
application, identify the pattern, and find more instances like it

• Manual code audits give you a clearer root cause analysis of
vulnerabilities in your applications, which allows you to better
understand their severity

• Sending malformed data to an application  
with the intent of monitoring for unexpected  
behavior such as an exception or a crash

• Fuzzing: cheap, fast, effective… shallow

• Develop custom fuzzers or adapt open source ones to run
against your code

• Start by mutating existing unit-tests

• Hardware is cheap, fuzz 24/7 against auto-generated builds
of your source tree

Vulnerability Discovery

Vulnerability Discovery

• clang-analyzer

• Source level analysis

• Great for finding certain classes of bugs but requires your
code be compiled with clang

• Address Sanitizer

• Use in combination with fuzzing

Runtime Protections

• The issues faced by compiled C/C++ applications are very
different than those in a web framework

• Exploiting memory corruption vulnerabilities on a modern
operating system requires defeating memory protections

• Defeating these protections takes time and resources for an
attacker, especially when they are combined

Runtime Protections

• ASLR - Address Space Layout Randomization

• GCC: -fPIC -fPIE

• Visual Studio: /DYNAMICBASE

• Ensures your process space is randomized at runtime

• This will reduce the reliability of exploits against your code that
use deterministic properties of your application

Runtime Protections

• DEP - Data Execution Prevention

• Ensures that memory not marked executable cannot be executed

• Legacy systems may have to emulate this in software

Defensive Design

• The low level power and control of C/C++ gives us an
opportunity to make exploit writers work for their money

• Study exploits for your application or one of a similar design

• Reduce predictability and deterministic behavior

• Examples: PartitionAlloc in Chrome, JIT hardening

• Sandboxes can help limit access by reducing privileges and
separating resources from unprivileged components

Legacy Code

• Legacy code on a legacy system

• If the application can be run in
a sandbox this is likely to
result in the best security ROI

• Audit code for older / pre-
SDLC bugs (strcpy, sprintf,
gets and so on)

• Fuzz, patch, fuzz, patch

• Legacy code on a modern system

• Even older code benefits from operating system supplied
protection for free, but this may require compatibility testing

• Use a newer compiler to benefit from compiler added
protections (stack cookies, SafeSEH, SEHOP)

• MSVC 2010 or newer

Legacy Code

(I think these are facebooks servers)

Conclusion
• Audit, Fuzz, Audit, Fuzz, Audit, Fuzz …

• Enable any memory protections made available by the operating
system for free, investigate which compiler protections you aren’t
currently utilizing in your code

• Stay up to date with attacker trends to help prioritize your efforts

• Study existing exploits and harden your application as necessary
to reduce deterministic behavior

 
chris.rohlf @ leafsr.com

http://leafsr.com

