
Reverse Engineering Flash Memory for Fun
and Benefit

Jeong Wook (Matt) Oh

oh@hp.com

oh.jeongwook@gmail.com

HP

NAND Flash technology
Flash Technology was invented circa 1980 by a Japanese inventor, Dr. Fujio Masuoka, while he was

working for Toshiba. (1) Intel was the first company to produce the chips en masse. (1) In the 1990s, the

technology was adapted from the industry and is now used everywhere. There are two different types

of technology in Flash memory. First, NOR-based Flash is typically used as a replacement for old ROM

technology. It has a long erase and write time, but it has a random read access capability for any

memory location. In contrast, NAND-based Flash has a shorter erase and write time, but has other

limitations. One limitation with NAND-based Flash is that it needs page-level access to the data. When

reading or writing, NAND can’t write by byte level, and the page size can vary from a few hundred bytes

to a few thousand. (2)

In this paper, I am going to present a methodology for reverse engineering NAND Flash memory. I am

most interested in NAND Flash technology when it is used for storage on embedded systems. Even if you

can’t perform random data access efficiently with NAND Flash, embedded devices can load up a whole

NAND image to a DRAM and start up the operating system on the memory using an MTD (Memory

Technology Device). I’ve found reverse engineering NAND Flash to be very beneficial when I was

experimenting with many embedded devices. There are many different models of NAND Flash out there,

and I’m using TSOP (Thin Small Outline Package) 48 type NAND Flash memory for my experiment here.

This type of chip is very commonly used in many embedded devices on the market.

NAND Flash specification
The ONFI (Open NAND Flash Interface) is a joint working group of the companies involved with NAND

Flash technology. It has published a series of industry standards, with specifications that are shared

openly and revised over time to include new features. These resources are extremely useful for coming

to grips with this technology. However, each chipset has its own specification, so whenever you work on

your project, try to find the appropriate specification for your chipset. Mostly, the datasheets don’t vary

much for each of the NAND Flash chipsets, but I advise referring to the most accurate information you

can find for your chipset.

mailto:oh@hp.com
mailto:oh.jeongwook@gmail.com
http://www.onfi.org/specifications

Direct interaction over JTAG method
The Joint Test Action Group (JTAG) technique is the most common approach when reverse engineering

modern embedded systems. While most vendors leave the JTAG interface for debugging and support,

there is a growing trend for obfuscating or removing it for security purposes. If the target device is using

NAND Flash memory for data storage, you can use a direct interaction method over JTAG.

De-soldering
The first step when interacting with NAND Flash memory is de-soldering the chip. You might use an SMT

(Surface Mount Technology) re-work station for this process. (Figure 1)

Figure 1 SMT re-work station

The de-soldering process is very straightforward. The de-soldering station provides a hot air blower.

Using the hot air, the solder alloy usually melts around 180 to 190 °C (360 to 370 °F) although I

recommend setting the temperature slightly higher than that. Before applying high heat to the chip, you

should put insulating tape around the target area. (Figure 2) This is for a couple of reasons: it protects

other chips and stops the PCB (Printed Circuit Board) from burning; and it also prevents other small

parts from being de-soldered accidentally. Direct the hot air over the pin areas evenly. At some point

the chip will loosen and you can use tweezers or a similar tool to remove the chip from the board. You

should be very careful not to burn yourself during this process.

Figure 2 De-soldering in progress

Figure 3 Removed chip

NAND reader writer
Now you have a bare NAND Flash chip at hand. The next step is reading the bare metal image from the

chip. There have been a lot of different approaches tried over time by the hobbyist community: Some

use special Flash reader chipsets that can provide low-level access. However, the most reliable way I

found to do this was bit-banging using the FTDI FT2232H chip set. This method was originally suggested

by Sprites Mod. Bit-banging is a technique that allows you to directly interact with chips through

software. FT2232H is a versatile chip that provides various ways to interact with chips through a USB

interface.

http://spritesmods.com/?art=ftdinand&page=2

FTDI FT2232H
FTDI FT2232H is a chip for USB communication. It provides USB 2.0 Hi-Speed (480Mb/s) to UART/FIFO IC.

(3)To make my life easier, I just purchased an FTDI FT2232H breakout board and put female pin headers

upon each of the port extensions. (Figure 4) The FTDI chip sets are pretty popular with hobbyists

because of their versatility, so it would not be difficult to find a similar breakout board on the market.

Figure 4 FTDI FT2232H Breakout board

FTDI FT2232H supports multiple modes. The ‘MCU Host Bus Emulation Mode’ is appropriate for our

purposes in this case. In this mode, the FTDI chip emulates an 8048/8051 MCU host bus. By sending the

commands shown in Table 1 and retrieving the results, the software can read or write bits through I/O

lines. More details are available in a note published by FTDI.

Commands Operation Address

0x90 Read 8bit address

0x91 Read 16bit address

0x92 Write 8bit address

0x93 Write 16bit address

0x82 Set High byte (BDBUS6, 7)

0x83 Read High byte (BDBUS6, 7)
Table 1 FT2232H Commands

Connecting FT2232H with NAND Flash pins
Figure 5 shows the typical NAND Flash memory, its pin numbers and names.

http://www.ftdichip.com/Support/Documents/AppNotes/AN_108_Command_Processor_for_MPSSE_and_MCU_Host_Bus_Emulation_Modes.pdf

1
2
3
4
5
6
7
8
9

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24

39

38
37
36
35
34
33
32
31
30
29
28
27
26
25

48
47
46
45
44
43
42
41
40

R/B

RE

CE

Vcc

Vss

CLE

ALE

WE

WP

I/O7

I/O6

I/O5

I/O4

I/O3

I/O2

I/O1

I/O0

Vcc

Vss

Figure 5 Important NAND Flash memory pins and names

Figure 6 shows the connection between the FT2232H chip and NAND Flash memory. The connections

are mostly based on information from Sprites Mod , but there is a slight modification between BDBUS6

and the CE (9) connection.

FT2232H

NAND Flash
Memory

29

30

31

32

41

42

43

44

19

16

17

8

12

13

37

36

18

9

7

ADBUS0

ADBUS1

ADBUS2

ADBUS3

ADBUS4

ADBUS5

ADBUS6

ADBUS7

ACBUS5

ACBUS6

ACBUS7

BDBUS2

BDBUS3

3.3v

GND

BDBUS6

BDBUS7

I/O0

I/O1

I/O2

I/O3

I/O4

I/O5

I/O6

I/O7

WP

CLE

ALE

RE

WE

Vcc

Vss

Vcc

Vss

CE

RB

Figure 6 Connection between FT2232H and NAND Flash Memory

http://spritesmods.com/?art=ftdinand&page=2

Table 2 shows you how to connect FT2232H pins with NAND Flash data lines. The ADBUS0 to ADBUS7

pins are used for data transfer and are connected to the I/O0 to I/O7 pins of the NAND Flash memory

chip. The functions of FT2232H’s pins are well explained in the datasheet. They are used for 8bit data

transfer.

FT2232H Use NAND Flash Pin number Description

ADBUS0 Bit0 I/O0 29

DATA INPUT/OUTPUT
Input command, address and data.
Output data during read operations.

ADBUS1 Bit1 I/O1 30

ADBUS2 Bit2 I/O2 31

ADBUS3 Bit3 I/O3 32

ADBUS4 Bit4 I/O4 41

ADBUS5 Bit5 I/O5 42

ADBUS6 Bit6 I/O6 43

ADBUS7 Bit7 I/O7 44
Table 2 FT2232H and NAND Flash Connections – Data Lines

Table 3 shows the connections for data type bit pins. CLE and ALE are used for command latch and

address latch enabling purposes, which means that when new commands or addresses are transferred

these lines should go high [1]. In this way, NAND Flash can differentiate between commands, addresses

and data. WP should go high when write operations are under way. CLE, ALE and WP are on ACBUS and

this bus is the 8 high bits when a 16bit operation is performed from the FTDI FT2232H chip. By setting

these bits on and off, the software side can control what kind of data or operations are sent to the Flash

memory.

FT2232H Use NAND Flash Pin number Description

ACBUS5 Bit13 WP 19 WRITE PROTECT
Write operations fail when this is not high.

ACBUS6 Bit14 CLE 16 COMMAND LATCH ENABLE
When this is high, commands are latched into the
command register through the I/O ports.

ACBUS7 Bit15 ALE 17 ADDRESS LATCH ENABLE
When this is high, addresses are latched into the address
registers.

Table 3 FT2232H and NAND Flash Connections – Data Types Bits

The RE and WE pins are used for signaling readiness for the FT2232H chip’s data read or write

operations. When the FT2232H chip is ready to read data, it sends a falling signal on the BDBUS2 (RD#)

pin and lets the other party know to send new data. When BDBUS3 (WR#) output is rising, it means new

data is available from the FT2232H chip and it lets the NAND Flash chip fetch it. The BDBUS6 (I/O0) and

BDBUS7 (I/O1) pins can be set and read using SET_BITS_HIGH (0x81), GET_BITS_HIGH (0x83) FT2232H

commands. When RB is low, it means the Flash memory chip is busy processing data. CE bits are usually

set to low, but when sequential row read operation is used, the pin needs to be set high after reading

each block data.

http://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_FT2232H.pdf

FT2232H Use NAND Flash Pin number Description

BDBUS6 I/O0 CE 9 CHIP ENABLE
Low state means the chip is enabled.

BDBUS7 I/O1 RB 7 READY/BUSY OUTPUT
This pin indicates the status of the device operation.
Low=busy, High=ready.

BDBUS2 Serial Data
In (RD#)

RE 8 READ ENABLE
Serial data-out control. Enable reading data from the
device.

BDBUS3 Serial Signal
Out (WR#)

WE 18 WRITE ENABLE
Commands, addresses and data are latched on the rising
edge of the WE pulse.

Table 4 FT2232H and NAND Flash connections –synchronization & control

Figure 7 shows a good example of a read operation. CLE and ALE go high which means the controller is

sending commands and addresses. The RE changes phases when page data is read from the NAND Flash

chip. The R/B line goes low during the busy state and back up to high when the NAND chip is ready.

Figure 7 Repeated read operation

You also need to connect power lines to each side of the NAND Flash memory chip.

FT2232H Use NAND Flash Pin number Description

3v3 POWER 3v3 12 POWER

GND GROUND GND 13 GROUND

3v3 POWER 3v3 36 POWER

GND GROUND GND 37 GROUND
Table 5 FT2232H and NAND Flash Connections – Power

Besides these, the CE (Cheap Enable) pin (9) from the NAND Flash chip should be grounded. This means

the chip is always enabled for normal operations.

NAND Flash chip command sets
Table 6 shows the basic command sets usually used by NAND Flash memory. There are more

complicated commands available depending on the chipsets, but these basic commands are enough for

essential operations like reading and writing data on the chip. Also, these commands tend to be the

same across different models and brands. The pins and other descriptions presented here are mostly

focused on small block NAND Flash models (512 bytes of data with 16 bytes OOB). Models with a large

block size use a different set of commands, but the principle is same.

Function 1st cycle 2nd cycle

Read 1 00h/01h -

Read 2 50h -

Read ID 90h -

Page Program 80h 10h

Block Erase 60h D0h

Read Status 70h
Table 6 Basic command sets for usual NAND Flash memory (small blocks)

Read operation
Every operation is done by page with Flash memory. To read a page, it uses the Read 1 (00h, 01h) and

Read 2 (50h) functions. To read a full page with OOB data from small block Flash memory, you need to

read it 3 times. The 00h command is used to read the first half of the page data (A area). The 01h

command is used to read the second half of the page data (B area). Finally, to retrieve the OOB of the

page (spare C area), the 50h command is used. Figure 8 shows the state of each pin when read

operations are performed. CLE is set to high [1] when commands (00h, 01h, 50h) are passed. ALE is set

to high [1] when addresses are transferred. R/B pin is set to low [0]) when the chip is busy preparing the

data. RE and WE are used to indicate the readiness of the data operation on the I/O lines. When the WE

signal is rising, new bytes (command and address in this case) are sent to the I/O pins. When the RE

signal is falling, new bytes come from the NAND Flash memory chip if any data is available.

0 1

1

1 (Ready)R/B=0 (busy)

0

0

1 (Ready)

CLE

ALE

R/B

RE Falling for each bytes1

00h/01h
/50h

Start Address

A0 – A7 A9 – A25
Data OutputI/O0~7

WE 1Rising for each bytes

Figure 8 Read operation pin states

Figure 9 shows a good example of how WE, CLE, ALE, and RE pin states change over time. First, the WE

and CLE logic changes to send commands. Next, the WE and ALE change state to send addresses. Finally,

RE is used to signal the reading of each byte.

Write
Command

Write
Address

Read
Data

Figure 9 Reading data

From the FlashTool project, the code to read pages is implemented in a way similar to the examples

shown in Figure 10 Error! Reference source not found.. The readPage method reads area A, B and the

spare C area. The NAND_CMD_READ0 (00h), NAND_CMD_READ1 (01h) and NAND_CMD_READOOB

(50h) commands are used to read each area.

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py

Read spare C
area (512-527)

Read A area
(0-255)

Read B area
(256-511)

Figure 10 Reading a small block page

Write operation
Writing operations are done through sequence-in command (80h) and program command (10h). (Table

7) It uses a read status command (70h) to retrieve the result of the write operation. If the I/O0 is 0, it

means the operation was successful.

0 1

1

1 (Ready)
R/B=0
(busy)

0

0

1 (Ready)

CLE

ALE

R/B

RE Falling1

80h
Address Input

A0 – A7 A9 – A25
I/O0~7 Page + OOB data

WE 1Rising for each bytes

70h I/O0=status

Rising 1

10h

1

Table 7 Write operation pin states

Figure 11 shows the code that writes a page with a spare C area (OOB) from the FlashTool project. One

thing to note is use of the NAND_CMD_READ0 (00h) at line 435, NAND_CMD_READ1 (01h) at line 446

and NAND_CMD_READOOB (50h) at line 457. Three commands are used for the reading operation, but

they are also used for moving the writing pointer to the A, B and C areas. If a NAND_CMD_SEQIN (80h)

command follows just after these commands, it just moves the pointer to each area. Additionally, there

should be a NAND_CMD_PAGEPROG (10h) command to commit the writing operation.

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py

Write A area
(0-255)

Write B area
(256-511)

Write spare C
area (512-527)

Figure 11 Writing a small block page with spare C area

Figure 12 shows a good example of a writing operation. After a command and address are sent, WE

fluctuates repeatedly to send bytes.

Write
Command

Write
Address

Write
Data

Figure 12 Writing Data

Reader writer
Figure 13 shows the final NAND Flash reader/writer assembled based on the connection information

shown in Table 2. You can make a device like this even with a relatively low budget. You need an FTDI

FT2232H breakout board, a USB cable, a TSOP48 socket, and wires.

Figure 13 NAND Flash reader/writer

Place your NAND Flash chip inside the TSOP48 socket. (Figure 14) This socket is very useful as you can

safely place your NAND Flash chip inside it and then directly interact with the extended pins without

touching and possibly damaging any Flash memory chip pins.

Figure 14 TSOP48 socket

When the NAND reader/writer is ready, just load the Flash memory. You should be careful to put the pin

1 location on the correct side of the socket. Usually the socket shows where pin 1 should be located.

(Figure 15) When things are set, you can connect the reader/writer to the computer through a USB

cable.

Pin 1 location

Figure 15 Pin 1 location

You need software to achieve bit-banging and there is a NANDTool open source project for this. I

actually forked this project and created another experimental project here. Also, I ported whole C++

code to a Python project and made a FlashTool project. When the original project didn’t support NAND

https://github.com/bkerler/NANDReader_FTDI
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py

Flash programming, I put support in with some modifications to the original code. I use my project for

this demonstration.

Download the FlashTool code from here first. You should install prerequisite packages like pyftdi and

libusbx. With everything setup, you can query basic Flash information using the –i option. (Figure 16)

Figure 16 NANDTool -i (reading information)

You can also read the raw data (Figure 17). It takes some time to retrieve all the data depending on the

size of the memory.

Figure 17 Reading raw data

The FlashTool also supports sequential row read mode. When you can specify the –s option, it uses the

mode and increases reading performance. The speed of reading is faster than normal page-by-page

mode by 5-6 times in this case. (Figure 18)

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/eblot/pyftdi
http://libusbx.org/

Figure 18 Sequential Row read mode (-s)

Working with a bare metal image
NAND Flash memory is a physical device and there’s always the chance that it will be affected by the

randomness of nature. NAND Flash uses a spare column to save meta-data on each page. A page is the

minimum element of data operation in NAND Flash as NAND Flash can’t perform byte-by-byte

operations. If you modify a byte from the page, it should rewrite the whole page with modified data. To

counteract random failures, Flash memory uses two concepts; ECC (Error Correction Code) and bad

blocks. This information is saved in the spare column of each page, which is also called the OOB area.

(Figure 19)

ECC Bad Block Marker

OOB Area

Data

Figure 19 Data & OOB area

ECC
The ECC is a way to correct one bit of failure from a page. Failure can always occur with data on memory.

A checksum can be useful to detect these errors. With ECC, besides detecting errors, it can correct them

if they are minor. It uses the concept of Hamming code, invented by Richard Hamming in 1950. It was

originally used for correcting errors with punch cards. (4)

Modern Flash memories use a different ECC algorithm with Hamming code as its root. Even similar

chipsets from the same vendor might have slightly different ECC algorithms. But the differences are

minor and are generally just tweaks of XOR or shifting orders or methods. The problem is that you need

to figure out the correct algorithms to verify the validity of each page and to generate ECC later for page

modification.

I’ll show the ECC algorithm used by the chip sets I worked on (Samsung K9F1208). Figure 20 shows the

table representation of bits on a page with a size of 512. Each bit is represented by a cell and each row is

one byte. From this matrix, first, you can calculate various checksums across bits.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P8'

P8

P8'

P8

P8'

P8

P8'

P8

P16'

P16

P16'

P16

...

P32'

P32'

P1 P1' P1 P1' P1 P1' P1 P1'

P2 P2' P2 P2'

P4 P4'

P2048'

P2048

...

...

Figure 20 ECC calculation table

For example, P8’ checksum is calculated by XOR-ing all the bits in red in Figure 21.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P8'

P8

P8'

P8

P8'

P8

P8'

P8

P16'

P16

P16'

P16

...

P32'

P32'

P2048'

P2048

...

...

Figure 21 P8' calculation

Figure 22 shows the example of calculating P16’. It uses bits from byte[0], bytes[1], byte[4], byte[5] and

so on until byte[508] and byte[509] for checksum calculation. Other column checksums like P8, P16’,

P16, P32’, P32, P2048’ and P2048 are calculated in same manner.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P8'

P8

P8'

P8

P8'

P8

P8'

P8

P16'

P16

P16'

P16

...

P32'

P32'

P2048'

P2048

...

...

Figure 22 P16' calculation

Figure 23 shows the example code that implements this algorithm.

Figure 23 Code for calculating row checksums

The column checksums are calculated over the same bit locations over all the bytes in the page. For

example, Figure 24 shows how P2 can be calculated by taking bits 2,3,6,7 from each byte.

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

...

byte[0]

byte[1]

byte[2]

byte[3]

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

byte[508]

byte[509]

byte[510]

byte[511]

...

P1 P1' P1 P1' P1 P1' P1 P1'

P2 P2' P2 P2'

P4 P4'

Figure 24 P2 calculation

Figure 25 shows the code that calculates column checksums.

Figure 25 Row checksum calculation code

Finally, you need to calculate 3 ECC values based on the checksums calculated. The row and column

checksum methods are very similar for different NAND Flash memory models, but ECC calculations tend

to be slightly different across different models. The code in Figure 26 shows the algorithm used for the

specific model I worked on.

Figure 26 ECC calculation code

Bad blocks
‘Bad blocks’ is a generic concept that is also used in hard disk technology. With Flash memory, if errors

are more than the ECC can handle, it marks the entire block as bad. Those blocks are isolated from other

blocks and are no longer used. To mark bad blocks, the first or last pages are used for marking,

according to the ONFI standard. Some vendors use their own scheme for marking bad blocks. Figure 27

shows one of the examples for checking bad blocks from the DumpFlash project. If the 6th byte from the

OOB data of the first or second page for each block has non FFh values, it is recognized as a bad block.

This scheme is used by multiple vendors including Samsung and Micron.

Figure 27 Example bad block check routine

Figure 28 Using DumpFlash tool to find bad blocks

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py

Start of a bad block

Bad block marker != 0xFF
OOB

Figure 29 How a bad block is marked

Reverse engineering Flash memory data
When the NAND Flash memory is used for booting up embedded systems, the structure usually looks

similar to Figure 30. The first block is always loaded first to address 0x00000000 during the boot-up

process. After that U-Boot code and images follow. When the boot-loading code and U-Boot images are

read only, the JFFS2 file system is used for reading and writing.

1st stage boot loader
(1 block)

U-Boot

U-Boot Image 1
(Ramdisk)

U-Boot Image 2
(Kernel)

JFFS2

Figure 30 An example of Flash memory layout

1st stage boot loader
This boot loader does low level initialization. (Figure 31)

Figure 31 Low level initialization of the system

It also loads up the next level boot loader. Figure 32 from the image I worked on shows very interesting

strings like the name of the first boot loader and some log messages on the next level boot loader.

Figure 32 Strings from the first stage boot loader

U-Boot loader
After the first stage boot loader, there is a next level boot loader that can perform various complicated

operations. U-Boot loader is a very popular choice amongst embedded systems. The kernel image and

actual file system are placed with them.

Figure 33 U-boot boot code

U-Boot images
The U-Boot image usually follows the U-Boot loader code. If the first 4 bytes of a block starts with the U-

boot magic DWORD 0x56190527, then it’s probably a U-Boot image. Figure 34 shows the image header

definition that contains the magic value.

Figure 34 U-Boot image header structure

For example, Figure 35 shows a typical U-Boot image header. The important value in retrieving the

whole image file is the image length. The header size is 0x40 and image length is 0x28A03B in this case.

This makes the total image size 0x28A07B.

Image Name

Magic
Image Length

Compression Type

Image Type

Figure 35 Typical U-Boot Image header

For my example, one page is 0x200 bytes, so the page count of the U-Boot image is 0x28A07B/0x200 =

0x1450. There are additional 0x28A07B%0x200 = 0x7B bytes above these pages. One page on the NAND

dump image is 0x210 because of the extra OOB size (0x10). So the physical address of the image end is

similar to the following:

 page count = 0x1450

 extra data = 0x7B

page count * (page size + oob size) + extra data

= 0x1450 * (0x200 + 0x10) + 0x7b

= 0x29E57B

The start address of the image is 0x31800 and if you add up this to the size of the image on the NAND

image (0x29E57B), it becomes 0x2CFD7B.

You can extract this image by running the following command using the –r option designating the start

and end addresses of the data.

python DumpFlash.py -r 0x00031800 0x002CFD7B -o Dump-00031800-UBOOT.dmp flash.dmp

Interestingly, IDA supports loading U-Boot images. (Figure 36)

Figure 36 U-Boot Image Disassembly

However, manually parsing the image still helps us to understand the internals, and IDA doesn’t do well

with multi-file images. Figure 37 shows the U-Boot header and multi-file length fields after that. The

DWORD 0x00000000 marks the end of length fields. For this image it has two images inside it with

lengths of 0x000E9118 and 0x001A0F17.

1st image length 2nd image length End of image length

U-Boot header
Multi-file image

Figure 37 Multi-file image

You can also use the mkimage command to check the content of the U-Boot file. (Figure 38)

Figure 38 mkimage result

Ramdisk image
When image 0 looks like a code file, image 1 has more interesting contents. By just fiddling around with

it you can identify that it is gzip compressed. After decompression, if you run the file command on the

file, it looks like Figure 39, which shows that the file is an ext2 file system file.

Figure 39 File command result on the 02.decompressed.img

You can mount the file on the Linux system using MTD. First, load MTD related kernel modules. (Figure

40)

Figure 40 Loading MTD modules

You can use dd to copy the image to the MTD block device. (Figure 41)

Figure 41 Using dd to copy image

After copying the image to the MTD device, you can mount it using the mount command. (Figure 42)

Figure 42 Mounting the device

Kernel image
With the image I worked on, I found another U-Boot image. The basic image information is shown in

Figure 43.

Figure 43 mkimage information for second U-Bootimage

IDA loads up this image without any issues. The only problem is that the code shown by IDA is the

bootstrapping code that decompresses following the gzipped kernel image. To identify the start of the

kernel image, you can search for the gzip image magic value (0x8b1f) as shown in Figure 44.

Start of gzipped
kernel image

Figure 44 Start of compressed image

After you take out the image starting from the gzip magic bytes, you can decompress the image using

any decompression utility that supports the gzip format. After it is decompressed you can load up the

image using IDA. (Figure 45)

Figure 45 Kernel Image Disassembly

JFFS2
From the whole layout, the JFFS2 file system is at the core of the data analysis. The boot loaders are

usually based on very generic code. Many interesting custom files are placed under the JFFS2 file system.

Identifying the JFFS2 file system from the raw NAND Flash image is relatively easy. Usually JFFS2 puts

specialized erasemarkers inside the spare column of each page. The erasemarkers are inserted when the

NAND Flash memory is formatted with JFFS2 file system tools. This indicates that the block is used by

JFFS2 and doesn’t need additional initialization. Ideally, the erasemarkers would be located at every first

page of each block. But, in reality it can present in every few blocks if the file system was created with a

block size different from the real NAND Flash memory block size. This doesn’t prevent JFFS2 from

working correctly, but might challenge performance.

Erasemarker
ECC Bad block

indicator
(FF=Clean)

OOB

Figure 46 JFFS2 Erase Marker location from a page and spare column bytes

After identifying the start of the JFFS2 file system, you can extract the whole image. You need to verify if

any bad blocks are present in the middle, check ECC for each block and remove the spare column from

the original bytes. To assist with this process, I released a tool called DumpFlash.py. To extract part of

the Flash memory, you just pass the start and end addresses after the –r option. You can put an output

file name after the –o option. The following command dumps out the JFFS2 file system (at address

0x0262c200 ~ 0x03084600) bytes from the flash.dmp file. (Figure 47)

python DumpFlash.py -r 0x0262c200 0x03084600 -o jffs2.dmp flash.dmp

Start of the JFFS2
file system

Figure 47 Example of start address of a JFFS2 file system

Mounting the JFFS2 file system using MTD
Now you can mount the JFFS2 raw image on the Linux operating system. First, you need to create an

MTD device. Load related Linux kernel modules like mtdram, mtdblock and jffs2 first. (Figure 48) This

creates an MTD device on the system.

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py

Figure 48 Loading related kernel modules

Use the dd utility to initialize the data of the MTD block device and mount the device to an arbitrary

location. (Figure 49)

Figure 49 Mount MTD block device

After successful mounting, you can navigate and modify the file system on the fly. (Figure 50)

Figure 50 Mounted JFFS2 file system

Low level JFFS2 analysis
JFFS2 is a journaling file system. A journaling file system is one that keeps logs of changes to the file

system. This is very useful for embedded systems as it means they can be turned off any time without

any proper shutdown process without breaking the whole file system. You might lose some changes, but

the integrity of other major file systems is not affected. Journaling makes the file system more resistant

to corruption due to sudden shutdown. The fact that JFFS2 keeps file system changes can be very useful

from a forensic point of view.

To automate the process of analyzing the JFFS2 file system, I created the DumpJFFS2 project that can

handle the low level nature of the JFFS2 file system file. Using this tool, you can dump out the whole file

system without mounting. Based on the source code, you can even create your own custom logic to

analyze the low level JFFS2 file system.

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py

Modifying data and reattaching
The good thing with this JFFS2 mounting technique is that you have write access on the file system. You

can try to modify and patch any files on the system and take the JFFS2 raw image from the MTD device.

The dumped image is a valid JFFS2 file that can be mounted again. You can program the NAND flash with

this modified JFFS2 data.

Figure 51 Dumping mtdblock device raw image

Writing to NAND Flash
After you make changes to the JFFS2 file system image, you need to place the OOB data before writing

to the Flash memory. The following command reconstructs a flat NAND Flash image from a memory

image of the JFFS2 file system. It reads the mtdblock0.dmp file dumped from the MTD device and adds

OOB data automatically, writing it to the mtdblock0.oob.dmp file. It calculates ECC for each page and

adds the JFFS2 erasemarker for each block.

python DumpFlash.py -R -o mtdblock0.oob.dmp mtdblock0.dmp

Using this flat image, you can finally write it back to the original NAND Flash memory chip. With the

NAND reader/writer connected to a USB port, run following command:

python FlashTool.py -w mtdblock.mod.oob.dmp -R 0x12820 0xffffffff

The -s option designates the start page number. The option 0x12820 designates the address of 0x12820

* (0x200 + 0x10) in this case (page size=0x100=512, spare column=0x10=16). The actual location it

writes is 0x262C200. This is the location from where I extracted the JFFS2 image.

Figure 52 shows what this NAND Flashing process looks like.

Figure 52 Writing the full image to NAND Flash

Re-soldering
After modifying raw data and writing it back to the Flash memory, it is time to re-solder the chip onto

the target system. The re-soldering process is not much different from standard SMT soldering.

Originally SMT was developed for automatic soldering of PCB components. So the chips are usually small

and the pitch of the pins is also relatively small. This makes soldering them to the PCB manually

challenging, but it is not extremely difficult when you get accustomed to it. There are many different

methodologies developed by many hobbyists. The method I used was just placing the chip on the pin

location and heating the pins using the soldering iron. This lets the solder residue (Figure 53) left from

the previous de-soldering process melt again. The chip is soldered again using this same solder.

Sometimes adding a small amount of solder paste onto each pin helps the chip to reattach to the board.

If this method doesn’t meet your requirements, you can remove any solder residue first and start with

new solder or solder paste. Various detailed techniques can be found on the Internet.

Figure 53 Solder residue

There are many pitfalls with SMT soldering and one of the big issues is bridging. The pitch for the NAND

flash TSOP48 model is 0.5 mm, which is extremely small. This means the solder can easily go over

multple pins and create shorts. (Figure 54) - be careful to ensure this doesn’t happen.

Figure 54 Bridge

One of the other big problems with re-soldering is possible damage to the board. (Figure 55) With the

de-soldering process, excessive heat is applied and it can damage the PCB board. With this in mind, you

should be extra careful when you re-solder the chips. One good thing with Flash memory, is that many

pins are not actually used. If the damaged patterns are not used, then the chips will still operate

normally. You should check with the chip datasheet to see if any damaged patterns are actually used by

the chip.

Figure 55 Damaged circuit board

For my case, the circuit for pin 48 was damaged but luckily the pin is never used by the chip. So

everything worked fine after re-soldering. The truth is that the pins that are not used have a greater

tendency to be damaged as they are not connected to any circuitry on the system. They are just glued to

the board without any connection to other components and it makes them more vulnerable to heat.

Tools
FlashTool – Python Implmentation of Flash reader/writer software

• https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py

• Write support

• Fast sequential row read mode support

• More experimental code coming.

Enhanced NandTool (forked from original NandTool): NandTool with writing support

• https://github.com/ohjeongwook/NANDReader_FTDI

• Write support

DumpFlash.py: Flash image manipulation tool (ECC, Bad block check)

• https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py

DumpJFFS2.py: JFFS2 parsing tool

https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/ohjeongwook/DumpFlash/blob/master/FlashTool.py
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/NANDReader_FTDI
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpFlash.py

• https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py

Conclusion
Interacting directly with Flash memory is useful when JTAG can’t be used. This situation is becoming

more and more likely these days as some vendors obfuscate or remove JTAG interfaces to protect their

intellectual property. As a security researcher, you have a need for accessing the internals of embedded

systems. By directly interacting with a low level Flash memory interface, you have the benefit of

accessing data that can’t otherwise be retrieved. The entire process can be time consuming, but the

benefit is clear. The de-soldering method is referred to as a destructive method in reverse engineering

hardware. But, it is still possible to re-solder the chip to the system using SMT soldering methods. There

is a higher chance of damaging the circuit board than when working on a fresh, new PCB board, but the

chance for success is still high enough. Also, there are many factors to consider when extracting,

modifying and reconstructing a bare metal image with your modification like ECC, bad blocks and JFFS2

erasemarkers. You might try to modify code from many places like boot loaders, the kernel and the

JFFS2 root image. Thus, you can start on your way to researching embedded systems, even when JTAG

connections are not feasible.

Lastly, many USB thumb drives and other devices also use NAND Flash memory for storage and they

don’t have any JTAG points at all by design. Even though the data format saved on the memory will be

totally different from what is presented here, it could be beneficial to perform forensic analysis on these

devices using this method.

References
1. [Online] http://www.forbes.com/fdc/welcome_mjx.shtml.

2. [Online] http://www2.electronicproducts.com/NAND_vs_NOR_flash_technology-article-FEBMSY1-

feb2002-html.aspx.

3. [Online] http://www.ftdichip.com/Products/ICs/FT2232H.htm.

4. [Online] http://www.techradar.com/us/news/computing/how-error-detection-and-correction-

works-1080736.

https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py
https://github.com/ohjeongwook/DumpFlash/blob/master/DumpJFFS2.py

