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Who am I? 

•  Co-founder and Chief Scientist at Lastline, Inc. 
–  Lastline offers protection against zero-day threats and advanced 

malware 
–  effort to commercialize our research 

•  Professor in Computer Science at UC Santa Barbara (on leave) 
–  many systems security papers in academic conferences 
–  started malware research in about 2004 
–  built and released practical systems (Anubis, Wepawet, …) 
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What are we talking about? 

•  Automated malware analysis 
–  how can we implement dynamic malware analysis systems 

•  Evasion as a significant threat to automated analysis 
–  detect analysis environment 
–  detect analysis system 
–  avoid being seen by automated analysis 

•  Improvements to analysis systems 
–  automate defenses against classes of evasion approaches 
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Evolution of Malware 
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Malware Analysis 
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Malware Analysis 
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Malware Analysis 
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Malware Analysis 
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There is a lot of malware out there … 
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•  Aka sandbox 

•  Automation is great! 
–  analysts do not need to look at each sample by hand (debugger) 
–  only way to stem flood of samples and get scalability 
–  can handle zero day threats (signature-less defense) 

•  Implemented as instrumented execution environment 
–  run program and observe its activity 
–  make determination whether code is malicious or not 
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Automated Malware Analysis 



What do we want to monitor? 

1.  Persistent changes to the operating system, network traffic 
–  a file was written, some data was exchanged over the network 
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c:\sample.exe!

net: 192.168.0.1!
-> evil.com:80!



What do we want to monitor? 

1.  Persistent changes to the operating system, network traffic 
–  a file was written, some data was exchanged over the network 

•  Can be done with post hoc monitoring of file system and 
external capturing of network traffic 
–  easy to implement 

–  allow malware to run on bare metal and unmodified OS (stealthy) 

–  quite poor visibility (no temporary effects, sequence of actions, 
memory snapshots, data flows, …) 
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What do we want to monitor? 

2.  Interactions between the program (malware) and the 
environment (operating system) 
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open c:\sample.exe!

net: 192.168.0.1!
-> evil.com:80!

write c:\sample.exe!

read c:\secret.exe!

write c:\tmp\a.txt!

delete c:\tmp\a.txt!



What do we want to monitor? 

2.  Interactions between the program (malware) and the 
environment (operating system) 

•  Can be done by instrumenting the operating system or libraries 
(install system call or library call hooks) 
–  typically done by running modified OS image inside virtual 

machines, used by many (most) vendors 
–  can see temporary effects, sequence of operations, more details 
–  very limited visibility into program operations (instructions) 
–  limited visibility of memory (where does data value come from?) 

14	




What do we want to monitor? 

3.  Details of the program execution (how does the program 
process certain inputs, how are outputs produced, which 
checks are done)? 
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open c:\sample.exe!

net: 192.168.0.1!
-> evil.com:80!

write c:\sample.exe!

read c:\secret.exe!

write c:\tmp\a.txt!

delete c:\tmp\a.txt!

Does the program “leak” 
information from the 
secret file to the network? 
And if so, under which 
circumstances (triggers)? 

Where does the data 
come from that is 
written into these files? 



What do we want to monitor? 

3.  Details of the program execution (how does the program 
process certain inputs, how are outputs produced, which 
checks are done)? 

•  Can be implemented through process emulation (CPU 
instructions + some Windows API calls) or a debugger 
–  provides single instruction visibility 

–  can potentially detect triggers and data flows 

–  poor fidelity (some Windows API calls) 

–  very slow and easy to detect (debugger) 

–  produces a lot of data, so analysis must be able to leverage it 
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What do we want to monitor? 

4.  Details of the program execution while maintaining good fidelity? 
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What do we want to monitor? 

4.  Details of the program execution while maintaining good fidelity? 

•  Can be implemented through full system emulation (running a real 
OS on top of emulated hardware – CPU / memory) 
–  provides single instruction visibility 

–  can detect triggers and data flows 

–  much better fidelity (real Windows) 

–  not as fast as native execution (or VM), but pretty fast 

–  produces a lot of data, so analysis must be able to leverage it 
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VM Approach versus CPU Emulation 
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Dynamic Analysis Approaches 
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Visibility 

Fidelity 

System call hooking 
(Virtual machines) 

Full System  
Emulation  Process 

Emulation  



Anubis: ANalyzing Unknown BInarieS  (university project) 
 and its successor (which was built from scratch)  

llama: LastLine Advanced Malware Analysis 
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Our Automated Malware Analysis 

–  based on full system emulation 

–  can see every instruction! 

–  monitors system activity from the outside (stealthier) 

–  runs real operating system  

–  requires mechanisms to handle semantic gap 

–  general platform on which additional components can be built 



Visibility Does Matter 

•  See more types of behavior 
–  which connection is used to leak sensitive data 

•  allows automated detection of C&C channels 
–  how does the malware process inputs from C&C channels 

•  enumeration of C&C commands (and malware functionality) 
–  insights into keyloggers (often passive in sandbox) 
–  take memory snapshots after decryption for forensic analysis 

•  Combat evasion 
–  detect triggers 
–  bypass stalling code 
–  much more about this later … 
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Detecting Keyloggers 

•  Software-based keyloggers 
–  SetWindowsHook: intercepts events from the system, such as 

keyboard and mouse activity 
–  GetAsyncKeyState or GetKeyState!

•  User simulation module that triggers actions likely to be 
monitored by keyloggers 
–  Type on keyboard 
–  Insert special data values (e.g., “valid” credit card numbers, 

passwords, email addresses, etc.) 

•  Track sensitive data and how it is used by the malware 
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Detecting Keyloggers 
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Detecting Keyloggers 
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Supporting Static Analysis 

•  Recognize interesting points in time during the analysis of a 
malware 
–  a sensitive system call has been executed 
–  malware has unpacked itself 

•  Take a snapshot of the process memory and annotate 
interesting regions 

•  Import snapshot into IDA Pro (together with the annotations) for 
manual analysis 
 
https://user.lastline.com/malscape#/task/f7b5c2293e574d069e0a48bcd7691b16 
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Supporting Static Analysis 
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Supporting Static Analysis 
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Evasion 

•  Malware authors are not sleeping 
–  they got the news that sandboxes are all the rage now 
–  since the code is executed, malware authors have options .. 

•  Evasion 
–  develop code that exhibits no malicious behavior in sandbox,  
     but that infects the intended target 
–  can be achieved in various ways 
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Evasion 

•  Malware can detect underlying runtime environment 
–  differences between virtualized and bare metal environment 
–  checks based on system (CPU) features 
–  artifacts in the operating system 

•  Malware can detect signs of specific analysis environments 
–  checks based on operating system artifacts (files, processes, …) 

•  Malware can avoid being analyzed 
–  tricks in making code run that analysis system does not see 
–  wait until someone does something 
–  time out analysis before any interesting behaviors are revealed 
–  simple sleeps, but more sophisticated implementations possible 
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Evasion 
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Evasion 
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Evasion 
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Detect Runtime Environment 

•  Insufficient support from hardware for virtualization 
–  J. Robin and C. Irvine: Analysis of the Intel Pentium’s Ability to 

Support a Secure Virtual Machine Monitor; Usenix Security 
Symposium, 2000 

–  famous RedPill code snippet 
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Detect Runtime Environment 

•  Insufficient support from hardware for virtualization 
–  J. Robin and C. Irvine: Analysis of the Intel Pentium’s Ability to 

Support a Secure Virtual Machine Monitor; Usenix Security 
Symposium, 2000 

–  famous RedPill code snippet 
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•  hardware assisted virtualization (Intel-VT and AMD-V) helps 
•  but systems can still be detected due to timing differences 



Detect Runtime Environment 

•  CPU bugs or unfaithful emulation 
–  invalid opcode exception, incorrect debug exception, … 

–  later automated in: R. Paleari, L. Martignoni, G. Roglia, D. Bruschi: 
A fistful of red-pills: How to automatically generate procedures to 
detect CPU emulators; Usenix Workshop on Offensive 
Technologies (WOOT), 2009 

–  recently, we have seen malware make use of (obscure) math 
instructions 

•  The question is … can malware really assume that a generic 
virtual machine implies an automated malware analysis system? 
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Detect Analysis Engine 

•  Check Windows XP Product ID 
   HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\ProductID 

•  Check for specific user name, process names, hard disk names 
   HKLM\SYSTEM\CURRENTCONTROLSET\SERVICES\DISK\ENUM!

•  Check for unexpected loaded DLLs or Mutex names 

•  Check for color of background pixel 

•  Check of presence of 3-button mouse, keyboard layout, … 
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Detect Analysis Engine 
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Detect Analysis Engine 
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Detect Analysis Engine 
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Avoid Monitoring 

•  Open window and wait for user to click 
–  or, as recently discovered by our competitor, click multiple times ;-) 

•  Only do bad things after system reboots 
–  system could catch the fact that malware tried to make itself 

persistent 

•  Only run before / after specific dates 

•  Code execution after initial call to NtTerminateProcess!

•  Bypass in-process hooks (e.g., of library functions) 
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Avoid Monitoring 
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Avoid Monitoring 
Code execution after initial call to NtTerminateProcess!
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Stop monitoring here 

Interesting stuff happens here …  



Avoid Monitoring 

Bypass in-process hooks (e.g., of library functions) 
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jump to second instruction of library 
function 



Avoid Monitoring 

•   Sleep for a while (analysis systems have time-outs) 
–  typically, a few minutes will do this 

•  Anti-sleep-acceleration 
–  some sandboxes skip long sleeps, but malware authors have 

figured that out … 

•  “Sleep” in a smarter way (stalling code) 
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Avoid Monitoring 

Anti-sleep-acceleration 
–  introduce a race condition that involves sleeping 

• Sample creates two threads 
1. sleep() + NtTerminateProcess!
2.  copies and restarts program 
–  if ZwDelayExecution gets patched, NtTerminateProcess 

executes before second thread is done 

• Another variation 
1. sleep() + DeleteFileW(<name>.bat)!
2.  start <name>.bat file 
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Avoid Monitoring 
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Real host - A few milliseconds 
Anubis - Ten hours 



What can we do about evasion? 

•  One key evasive technique relies on checking for specific values 
in the environment (triggers) 
–  we can randomize these values, if we know about them 
–  we can detect (and bypass) triggers automatically 

•  Another key technique relies on timing out the sandbox 
–  we can automatically profile code execution and recognize stalling 
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Bypassing Triggers 

•  Idea 
–  explore multiple execution paths of executable under test 
–  exploration is driven by monitoring how program uses certain inputs 
–  system should also provide information under which circumstances a 

 certain action is triggered 

•  Approach 
–  track “interesting” input when it is read by the program 
–  whenever a control flow decision is encountered that uses such input, 

 two possible paths can be followed 
–  save snapshot of current process and continue along first branch 
–  later, revert back to stored snapshot and explore alternative branch 
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Bypassing Triggers 

•  Tracking input 
–  we already know how to do this (tainting) 

•  Snapshots 
–  we know how to find control flow decision points (branches) 
–  snapshots are generated by saving the content of the process’ virtual  

 address space (of course, only used parts) 
–  restoring works by overwriting current address space with stored image 

•  Explore alternative branch 
–  restore process memory image 
–  set the tainted operand (register or memory location) to a value that reverts  

 branch condition 
–  let the process continue to run 
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Bypassing Triggers 

•  Unfortunately, it is not that easy 
–  when only rewriting the operand of the branch, process state  

 can become inconsistent 
–  input value might have been copied or used in previous calculations 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	
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Bypassing Triggers 

•  Unfortunately, it is not that easy 
–  when only rewriting the operand of the branch, process state  

 can become inconsistent 
–  input value might have been copied or used in previous calculations 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	


x = 0	
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Bypassing Triggers 

•  Unfortunately, it is not that easy 
–  when only rewriting the operand of the branch, process state  

 can become inconsistent 
–  input value might have been copied or used in previous calculations 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	


x = 0	
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Bypassing Triggers 

•  Unfortunately, it is not that easy 
–  when only rewriting the operand of the branch, process state  

 can become inconsistent 
–  input value might have been copied or used in previous calculations 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	


x = 0	
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Bypassing Triggers 

•  Unfortunately, it is not that easy 
–  when only rewriting the operand of the branch, process state  

 can become inconsistent 
–  input value might have been copied or used in previous calculations 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	


x = 0	


exit(); 

magic = 0 
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Bypassing Triggers 

•  Unfortunately, it is not that easy 
–  when only rewriting the operand of the branch, process state  

 can become inconsistent 
–  input value might have been copied or used in previous calculations 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	


x = 0	


exit(); 

magic = 0 

printf(“x = %d”,x); 

magic = 47 

This prints  x = 0 !	

We have to remember that y depends on x, 
and that magic depends on y.	
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Bypassing Triggers 

•  Tracking of input must be extended 
–  whenever a tainted value is copied to a new location,  

 we must remember this relationship 
–  whenever a tainted value is used as input in a calculation,  

 we must remember the relationship between the input and the result 
 

•  Constraint set 
–  for every operation on tainted data, a constraint is added that captures  

 relationship between input operands and result 
–  currently, we only model linear relationships 
–  can be used to perform consistent memory updates when exploring 

 alternative paths 
–  provides immediate information about condition under which path is selected 
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Bypassing Triggers 

•  Constraint set 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	
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Bypassing Triggers 

•  Constraint set 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	


x = 0	
 x == input 

y == 2*x + 1 

magic == y 
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Bypassing Triggers 

•  Constraint set 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	


x = 0	
 x == input 

y == 2*x + 1 

magic == y 

magic == 47 
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Bypassing Triggers 

•  Constraint set 

x = read_input(); 
y = 2*x + 1; 
check(y); 
print(“x = %d, x”); 
.... 
 
 
void check(int magic) { 
    if (magic != 47) 
       exit(); 
}	


x = 0	


Now, print outputs “x = 23”	


x == input 

y == 2*x + 1 

magic == y 

magic == 47 
solve for alternative 
branch 

y  == magic == 47 
x  == input == 23 
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Bypassing Triggers 

•  Path constraints 
–  capture effects of conditional branch operations on tainted variables 
–  added to constraint set for certain path 

x = read_input(); 
 
if (x > 10) 
  if (x < 15) 
    interesting(); 
 
exit();	
 exit(); 

x <= 10 x > 10 

exit(); 

x  >  10 
x >= 15 

interesting(); 

x > 10 
x < 15 
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Bypassing Triggers 

•  308 malicious executables 
–  large variety of viruses, worms, bots, Trojan horses, … 

Interesting input sources 
Check for Internet connectivity 20 
Check for mutex object 116 
Check for existence of file 79 
Check for registry entry 74 
Read current time 134 
Read from file 106 
Read from network 134 

Additional code coverage 
           none 136 
    0% - 10% 21 
  10% - 50% 71 
50% - 200% 37 
       > 200% 43 

Additional code is likely  
for error handling 

Relevant behavior: 
  time-triggers 
  filename checks 
  bot commands 



Combating Evasion  

•  Mitigate stalling loops 
1.  detect that program does not make progress 

2.  passive mode 
•  find loop that is currently executing 

•  reduce logging for this loop (until exit) 

3.  active mode 
•  when reduced logging is not sufficient 

•  actively interrupt loop 

 
•  Progress checks 

–  based on system calls 
 too many failures, too few, always the same, … 
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Passive Mode 

•  Finding code blocks (white list)  
 for which logging should be reduced 

 

–  build dynamic control flow graph 

–  run loop detection algorithm 

–  identify live blocks and call edges 

–  identify first (closest) active loop 
 (loop still in progress) 

 

–  mark all regions reachable from 
 this loop 
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Function f

Function gFunction m

Loop l1

Loop l2

Current

Code Block

Stalling Code Region

Live Call



Active Mode 

•  Interrupt loop 
–  find conditional jump that leads out of white-listed region 
–  simply invert it the next time control flow passes by 

•  Problem 
–  program might later use variables that were written by loop 

 but that do not have the proper value and fail 

•  Solution 
–  mark all memory locations (variables) written by loop body 
–  dynamically track all variables that are marked (taint analysis) 
–  whenever program uses such variable, extract slice that computes 

this value, run it, and plug in proper value into original execution 
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Experimental Results 

67	


•   1,525 / 6,237 stalling samples 
    reveal additional behavior 
•    At least 543 had obvious signs 
    of malicious (deliberate) stalling 



Evasion in a Broader Context 
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Conclusions 

•  Visibility and fidelity are two critical factors when building successful 
dynamic analysis systems 
–  full system emulation is a great point in the design spectrum 

•  Automated analysis of malicious code faces number of challenges 
–  evasion is one critical challenge 
 

•  We shouldn’t simply give up; it is possible to address many evasion 
techniques in very general ways 
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For more information visit www.lastline.com 
or contact us at info@lastline.com. 

THANK YOU! 
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