|

bt

Security
Empowers
Business




Bootkits

= New security features raise the bar for kernel mode rootkits
* Driver Signature Enforcement
- Patch Guard
* Secure Boot

= \Why are techniques from the 1980s still a threat today?
« Secure Boot is a UEFI feature
* Legacy BIOS systems boot from unsigned sectors
- Malware may run code before security features kick in

» Perhaps not a good idea to rely on technology from the 1970s



= Manipulating the BIOS boot sequence

= Overcoming rootkit hooks to read true disk contents
* Emulating the boot code and the BIOS

* Demo — Typical bootkit behaviour

= Heuristic detection based on boot code behavior

= Disabling bootkits

» Challenges with non-standard boot loaders



Bootkits: Common Denominators

= Aims to load an unsigned kernel mode driver
- Manipulating boot sectors is just a way to achieve this
 Bypass security features by running code early in the boot process

= Attack surface

« ~17 unsigned sectors on disk (the boot sectors)
— MBR, VBR, IPL

- Cannot load driver this early — kernel is not yet loaded

» Load chains may be complex
* TDL4 — replaces kdcom.dll in memory
» Rovnix — patches bootmgr in memory
 Boot sector modifications make this possible



Modifying BIOS Boot Sequence

* BIOS interrupt 19h loads first sector on disk into 0:7C00
* 16-bit code running in real mode
* Loads sectors on disk into memory using interrupt 13h

* MBR loads VBR into 0:7C00
» Overwriting itself

mou ax, 281h
mou b=, fCHABH
*VBR loads IPL mow cx, [bp+2]
- Parses NTFS to locate bootmgr mow dx, [bp+8]
int 13h

= Bootkits replace contents
« Still needs OS to load — resume normal boot after modification



0:7c00

0:7c00

MBR >
copy

MBR

VBR

Load IPL into
memory

IPL

Y

Parse NTFS
Locate bootmgr
and load it

Locate VBR, and load it into memory
(overwriting MBR)

bootmgr




Using anti-rootkit
techniques to read
true disk content




User mode

NtReadFile Kernel mode
File System
Volume
J Class
Partition l
l Port
Disk J
___________________________________ o «|_ Dispatch routine for IRPs of type
HAL Miniport IRP_MJ INTERNAL DEVICE CONTROL

____________________________________



Using Miniport’s Dispatch Routine

= Miniport's DriverEntry sets up its Driver Object
* MajorFunction array holds dispatch routines

= Obtain minport’s Driver Object to extract function pointer to a
routine that implements reading and writing to raw sectors

* No need to worry about hooks at higher levels
- No need to implement hardware-specific logic

= See whitepaper for an alternative approach using P1O
- Communicate directly with disk controller



The Challenge of Hooks

* This is a powerful routine
 Great place for rootkits to install hooks

= Rootkits may manipulate Driver Object in memory

* Install function pointer hook by replacing dispatch routine in
MajorFunction array

* Install inline hook by modifying the contents of the routine in memory

= \We need to obtain the original function pointer



Overcoming Function Pointer Hooks

= Cannot trust memory contents
* Need to find a trustworthy source of information

= Signed executable on disk cannot be modified

» Analyze miniport driver on disk
- Retrieve RVA from disk image
 Retrieve base address of loaded image



DriverEntry Initializes Dispatch Routines

NTSTATUS DriverEntry(__in DRIVER_OBJECT *pDriverObject, __in UNICODE_STRING *pRegistryPath)

{
ff

// Set dispatch routines

pDriverObject->MajorFunction[IRP_MJ_CREATE] = Dispatch_Dummy;
pOriverObject->MajorFunction[IRP_MJ_CLOSE] = Dispatch_Dummy;
pDriverObject->MajorFunction[IRP_MJ_DEVICE_CONTROL] = Dispatch_DeviceControl;
pDriverObject->MajorFunction[IRP_MJ_INTERNAL_DEVICE_CONTROL] = Dispatch_InternalDeviceControl;
pDriverObject->MajorFunction[IRP_MJ_PNP] = Dispatch_PnP;
pDriverObject->MajorFunction[IRP_MJ_SYSTEM_CONTROL] = Dispatch_SystemControl;
pDriverObject->MajorFunction[IRP_MJ_POWER] = Dispatch_Power;

I

return STATUS_SUCCESS:



Obtaining RVA of Dispatch Routine

* Find the instructions that initialize the MajorFunction array

 Retrieve the RVA of the dispatch routine responsible for handling
IRPs of type IRP_MJ INTERNAL_DEVICE_CONTROL

» Recursively disassemble driver on disk
 Recursive approach to include subroutines (local functions)
* Look for instructions that modify memory
* There are some common logic that should always be present



Disassembly of DriverEntry

lea rax, DriverUnload

mov [rsi+68h], rax

lea rax, Dispatch_InternalDeviceControl

X0 PCX, PCX

mou [Fsi+BES8h], rax ; Set IRP _MJ INTERHAL DEVICE COWTROL
lea rax, Dispatch_ Dummy

mou r8d, °‘PedIl’

mov [rsi+7Bh], rax ; Set IRP_HJ CREATE

mov [Fsi+8Bh], rax ; Set IRP MJ WRITE

lea rax, Dispatch_DeviceControl

moy [Fsi+BEBh], rax ; Set IRP_HMJ DEUICE CONTROL
lea rax, Dispatch_ Power

mov [r5i+12Bh], rax ; Set IRP_HJ POUWER

lea rax, Dispatch_PnP

mov [rsi+148h], rax ; Set IRP_HJ FHP

lea rax, Dispatch_ SystemControl

mov [r5i+128h], rax ; Set IRP_MJ SYSTEM CONTROL



Searching for the Dispatch Routine

» Analyze entire routines, looking for:
* mov [reg + offset], routine

= Keep register values
* lea rax, routine
* mov [rsi + E8h] , rax

= Critical observation — Some routines are always present
* Power, PnP, DeviceControl, InternalDeviceControl, DriverUnload
- All have fixed offsets within driver object

= Search for all offsets within a single routine
« Extract RVA of InternalDeviceControl routine if all 5 are found



Overcoming inline hooks

* Knowing the expected contents of a routine enables us to detect
and bypass inline hooks

- Compare disk contents with memory contents

= Construct trampoline consisting of original instructions + branch

- Execute original instructions, then pass control to the rest of the
routine

- Use disassembly to ensure we are stealing whole instructions
- Pass control to the next whole instruction following the patch



Interfacing with the Dispatch Routine

» I[mitate the next higher driver

= Create an IRP
« Miniport will pass it back up when request has completed
+ Set an loCompletion routine that will simply destroy the IRP

= Data on request goes into I/O Stack Location
« Command Descriptor Block

« SCSI commands
— READ (10), READ (16)
* Boils down to specifying sector numbers (LBA)

= Whitepaper has more details on this



In order to emulate
the boot code we
also need to
emulate the BIOS



Emulating the Boot Sequence

» Custom BIOS written in 16-bit assembly
* Implements the functionality we expect boot loaders make use of

* Emulator provides a separate memory space
* Only accessible the emulated code and the emulator itself

» Load MBR into emulator memory at 0:7C00
» Load custom BIOS into emulator memory at FOO0:FCO00

» Emulation starts at BIOS entry point
- We will emulate the initialization code
* Once complete, transfer control to first instruction of MBR



BIOS Implementation

= Set up Interrupt Vector Table (IVT)
* Located at 0:0

= Register interrupt vectors for:
* interrupt 10h - Video
* interrupt 13h — Disk 1/0O
* interrupt 16h — Keyboard
« Dummy routines for the rest

= \When we emulate an interrupt, our BIOS will handle it

 Break out of emulation loop for interrupt 13h, as we need to
incorporate anti-rootkit techniques for disk I/0

- Emulation resumes when contents has been written to memory



IVT

0:0

Emulated code

int 13h " '
g - BIOS
Emulator passes

control to handler

A
Emulated evironment
Real system
\J
Anti-Rootkit - > Emulator

Read/Write raw
sectors



» Typical behavior of MBR boot process when compromised

» Debugger Ul on top of our emulator ftw



Emulating the boot
code reveals
anomalies in its
behavior

No baseline
required



Interrupt 13h Hooks

» Boot code seeks to patch modules not yet loaded
* Hooking interrupt 13h enables intercepting all disk i/o
- Enables patching memory contents on-the-fly

» Needs to regain control later in boot process
« Cannot load its kernel mode driver before kernel itself has loaded
» Modify memory in some way to achieve this
- May wait for a certain byte pattern or use other indicators

» Emulated code will interact with our custom BIOS
* Will modify our interrupt 13h handler in our IVT
* Check if it is still intact once emulation completes



Patching bootmgr

* pootmgr is signed for a reason

* When emulation reaches the point where control is passed to it,
Its entire contents resides in memory

* bootmgr is a special executable
- disk image = memory image

» Comparing contents on disk with memory reveals anomalies
» Normally, bootmgr will be patched using an interrupt 13h hook



MBR Replacement Anomaly

= Bootkits need the OS to boot
- Make changes, then let normal boot sequence continue

= Retrieve original MBR, and load it back to 0:7C00h
* This is where the original MBR expects to be loaded

= This results in an anomaly in the behavior of the boot code



0:7c00

0:7c00

0:7c00

Do something fishy, and load original

MBR

Bad MBR > Bad MBR
copy
-—
MBR >
copy
-
VBR

Load IPL into
memory

IPL

Locate VBR, and load it into memory
(overwriting MBR)

Y

Parse NTFS
Locate bootmgr
and load it

bootmgr

Stop emulation at first
instruction



Breaking
load chains




Retrieving Original Boot Sector Contents

= Key is to determine what has been changed
» Count number of times 0:7C00 is executed
- MBR case — Stop emulation at second execution of 0:7C00
- VBR/IPL case — Let emulation complete

= Retrieve original contents from emulator memory
* Encrypted on disk? No problem!

= Replace modified parts with original
- Breaks the load chain
* Reboot system to finish it off



Non-standard boot
loaders complicate
detection

- -
_“h»_'.&..':'g"‘ = o
v - = o ¥ . s
w0 ME» gt~ o o
e (68 - et .
o ¥ sam) R WE - ¥
- v e
avn . i ' =
puRRRRRRE- “3115‘ .
“n ﬁ;gi‘““““““nt.l' -
. af BA 88 B0 A BN BEE gy o
i 3 V&N " <

- o= ‘“i« F; el B . :
s e, ST £ M. -

- -



Challenges

* Non-standard boot loaders that load multiple OSes
* e.g. GRUB requires user input

= Full disk encryption solutions
- May require user to enter a password during boot
* Also, often hook interrupt 13h in order to decrypt disk contents

= Hard or impossible for our BIOS to make decisions

» Detect whenever the boot loader ask for user input
- Boot code will poll for keyboard input using interrupt 16h
« Abort emulation and report that we cannot decide if it is good or bad



Conclusion

= Anomalies in boot sectors are detectable by emulation
« Must incorporate anti-rootkit technigues when reading disk
 Counters obfuscation and encryption
» Challenges with non-standard boot loaders

= Break rootkit's load chain to defeat it
- Emulation approach effective at retrieving original contents

» UEFI systems are more secure than BIOS systems

 Booting from signed firmware is more secure than relying on
technology from the 1970s



Thank you for your attention!

= Special thanks to my co-researcher Leif Arne Sgderholm

= High five to the rest of the R&D team

= Also big thanks to the guys at kernelmode.info
 Great source for rootkit samples!



|

bt

Security
Empowers

Business







