
Exposing Bootkits with

BIOS Emulation

Lars Haukli

Sr. Security Researcher

Black Hat USA 2014

lars.haukli@bluecoat.com

Twitter: @zutle

Bootkits

New security features raise the bar for kernel mode rootkits

• Driver Signature Enforcement

• Patch Guard

• Secure Boot

Why are techniques from the 1980s still a threat today?

• Secure Boot is a UEFI feature

• Legacy BIOS systems boot from unsigned sectors

• Malware may run code before security features kick in

Perhaps not a good idea to rely on technology from the 1970s

Roadmap

Manipulating the BIOS boot sequence

Overcoming rootkit hooks to read true disk contents

Emulating the boot code and the BIOS

Demo – Typical bootkit behaviour

Heuristic detection based on boot code behavior

Disabling bootkits

Challenges with non-standard boot loaders

Bootkits: Common Denominators

Aims to load an unsigned kernel mode driver

• Manipulating boot sectors is just a way to achieve this

• Bypass security features by running code early in the boot process

Attack surface

• ~17 unsigned sectors on disk (the boot sectors)

– MBR, VBR, IPL

• Cannot load driver this early – kernel is not yet loaded

Load chains may be complex

• TDL4 – replaces kdcom.dll in memory

• Rovnix – patches bootmgr in memory

• Boot sector modifications make this possible

Modifying BIOS Boot Sequence

BIOS interrupt 19h loads first sector on disk into 0:7C00

• 16-bit code running in real mode

• Loads sectors on disk into memory using interrupt 13h

MBR loads VBR into 0:7C00

• Overwriting itself

VBR loads IPL

• Parses NTFS to locate bootmgr

Bootkits replace contents

• Still needs OS to load – resume normal boot after modification

7Copyright © 2013 Blue Coat Systems Inc. All Rights Reserved.

Using anti-rootkit

techniques to read

true disk content

Overcoming hooks

Slide title goes here

Using Miniport’s Dispatch Routine

Miniport’s DriverEntry sets up its Driver Object

• MajorFunction array holds dispatch routines

Obtain minport’s Driver Object to extract function pointer to a

routine that implements reading and writing to raw sectors

• No need to worry about hooks at higher levels

• No need to implement hardware-specific logic

See whitepaper for an alternative approach using PIO

• Communicate directly with disk controller

The Challenge of Hooks

This is a powerful routine

• Great place for rootkits to install hooks

Rootkits may manipulate Driver Object in memory

• Install function pointer hook by replacing dispatch routine in

MajorFunction array

• Install inline hook by modifying the contents of the routine in memory

We need to obtain the original function pointer

Overcoming Function Pointer Hooks

Cannot trust memory contents

• Need to find a trustworthy source of information

Signed executable on disk cannot be modified

Analyze miniport driver on disk

• Retrieve RVA from disk image

• Retrieve base address of loaded image

DriverEntry Initializes Dispatch Routines

Obtaining RVA of Dispatch Routine

Find the instructions that initialize the MajorFunction array

• Retrieve the RVA of the dispatch routine responsible for handling

IRPs of type IRP_MJ_INTERNAL_DEVICE_CONTROL

Recursively disassemble driver on disk

• Recursive approach to include subroutines (local functions)

• Look for instructions that modify memory

• There are some common logic that should always be present

Disassembly of DriverEntry

Searching for the Dispatch Routine

Analyze entire routines, looking for:

• mov [reg + offset], routine

Keep register values

• lea rax, routine

• mov [rsi + E8h] , rax

Critical observation – Some routines are always present

• Power, PnP, DeviceControl, InternalDeviceControl, DriverUnload

• All have fixed offsets within driver object

Search for all offsets within a single routine

• Extract RVA of InternalDeviceControl routine if all 5 are found

Overcoming inline hooks

Knowing the expected contents of a routine enables us to detect

and bypass inline hooks

• Compare disk contents with memory contents

Construct trampoline consisting of original instructions + branch

• Execute original instructions, then pass control to the rest of the

routine

• Use disassembly to ensure we are stealing whole instructions

• Pass control to the next whole instruction following the patch

Interfacing with the Dispatch Routine

 Imitate the next higher driver

Create an IRP

• Miniport will pass it back up when request has completed

• Set an IoCompletion routine that will simply destroy the IRP

Data on request goes into I/O Stack Location

• Command Descriptor Block

• SCSI commands

– READ (10), READ (16)

• Boils down to specifying sector numbers (LBA)

Whitepaper has more details on this

20Copyright © 2013 Blue Coat Systems Inc. All Rights Reserved.

In order to emulate

the boot code we

also need to

emulate the BIOS

Emulating the boot sequence

Emulating the Boot Sequence

Custom BIOS written in 16-bit assembly

• Implements the functionality we expect boot loaders make use of

Emulator provides a separate memory space

• Only accessible the emulated code and the emulator itself

Load MBR into emulator memory at 0:7C00

Load custom BIOS into emulator memory at F000:FC00

Emulation starts at BIOS entry point

• We will emulate the initialization code

• Once complete, transfer control to first instruction of MBR

BIOS Implementation

Set up Interrupt Vector Table (IVT)

• Located at 0:0

Register interrupt vectors for:

• interrupt 10h - Video

• interrupt 13h – Disk I/O

• interrupt 16h – Keyboard

• Dummy routines for the rest

When we emulate an interrupt, our BIOS will handle it

• Break out of emulation loop for interrupt 13h, as we need to

incorporate anti-rootkit techniques for disk I/O

• Emulation resumes when contents has been written to memory

Demo

Typical behavior of MBR boot process when compromised

Debugger UI on top of our emulator ftw

25

Emulating the boot

code reveals

anomalies in its

behavior

No baseline

required

Detecting Anomalies

Interrupt 13h Hooks

Boot code seeks to patch modules not yet loaded

• Hooking interrupt 13h enables intercepting all disk i/o

• Enables patching memory contents on-the-fly

Needs to regain control later in boot process

• Cannot load its kernel mode driver before kernel itself has loaded

• Modify memory in some way to achieve this

• May wait for a certain byte pattern or use other indicators

Emulated code will interact with our custom BIOS

• Will modify our interrupt 13h handler in our IVT

• Check if it is still intact once emulation completes

Patching bootmgr

bootmgr is signed for a reason

When emulation reaches the point where control is passed to it,

its entire contents resides in memory

bootmgr is a special executable

• disk image = memory image

Comparing contents on disk with memory reveals anomalies

• Normally, bootmgr will be patched using an interrupt 13h hook

MBR Replacement Anomaly

Bootkits need the OS to boot

• Make changes, then let normal boot sequence continue

Retrieve original MBR, and load it back to 0:7C00h

• This is where the original MBR expects to be loaded

This results in an anomaly in the behavior of the boot code

30Copyright © 2013 Blue Coat Systems Inc. All Rights Reserved.

Breaking

load chains

Disabling Bootkits

Retrieving Original Boot Sector Contents

Key is to determine what has been changed

• Count number of times 0:7C00 is executed

• MBR case – Stop emulation at second execution of 0:7C00

• VBR/IPL case – Let emulation complete

Retrieve original contents from emulator memory

• Encrypted on disk? No problem!

Replace modified parts with original

• Breaks the load chain

• Reboot system to finish it off

32Copyright © 2013 Blue Coat Systems Inc. All Rights Reserved.

Non-standard boot

loaders complicate

detection

Challenges

Challenges

Non-standard boot loaders that load multiple OSes

• e.g. GRUB requires user input

Full disk encryption solutions

• May require user to enter a password during boot

• Also, often hook interrupt 13h in order to decrypt disk contents

Hard or impossible for our BIOS to make decisions

Detect whenever the boot loader ask for user input

• Boot code will poll for keyboard input using interrupt 16h

• Abort emulation and report that we cannot decide if it is good or bad

Conclusion

Anomalies in boot sectors are detectable by emulation

• Must incorporate anti-rootkit techniques when reading disk

• Counters obfuscation and encryption

• Challenges with non-standard boot loaders

Break rootkit’s load chain to defeat it

• Emulation approach effective at retrieving original contents

UEFI systems are more secure than BIOS systems

• Booting from signed firmware is more secure than relying on

technology from the 1970s

Thank you for your attention!

Special thanks to my co-researcher Leif Arne Søderholm

High five to the rest of the R&D team

Also big thanks to the guys at kernelmode.info

• Great source for rootkit samples!

Questions?

Lars Haukli

Sr. Security Researcher

lars.haukli@bluecoat.com

Twitter: @zutle

