
Exposing Bootkits with

BIOS Emulation

Lars Haukli

Sr. Security Researcher

Black Hat USA 2014

lars.haukli@bluecoat.com

Twitter: @zutle

Bootkits

New security features raise the bar for kernel mode rootkits

• Driver Signature Enforcement

• Patch Guard

• Secure Boot

Why are techniques from the 1980s still a threat today?

• Secure Boot is a UEFI feature

• Legacy BIOS systems boot from unsigned sectors

• Malware may run code before security features kick in

Perhaps not a good idea to rely on technology from the 1970s

Roadmap

Manipulating the BIOS boot sequence

Overcoming rootkit hooks to read true disk contents

Emulating the boot code and the BIOS

Demo – Typical bootkit behaviour

Heuristic detection based on boot code behavior

Disabling bootkits

Challenges with non-standard boot loaders

Bootkits: Common Denominators

Aims to load an unsigned kernel mode driver

• Manipulating boot sectors is just a way to achieve this

• Bypass security features by running code early in the boot process

Attack surface

• ~17 unsigned sectors on disk (the boot sectors)

– MBR, VBR, IPL

• Cannot load driver this early – kernel is not yet loaded

Load chains may be complex

• TDL4 – replaces kdcom.dll in memory

• Rovnix – patches bootmgr in memory

• Boot sector modifications make this possible

Modifying BIOS Boot Sequence

BIOS interrupt 19h loads first sector on disk into 0:7C00

• 16-bit code running in real mode

• Loads sectors on disk into memory using interrupt 13h

MBR loads VBR into 0:7C00

• Overwriting itself

VBR loads IPL

• Parses NTFS to locate bootmgr

Bootkits replace contents

• Still needs OS to load – resume normal boot after modification

7Copyright © 2013 Blue Coat Systems Inc. All Rights Reserved.

Using anti-rootkit

techniques to read

true disk content

Overcoming hooks

Slide title goes here

Using Miniport’s Dispatch Routine

Miniport’s DriverEntry sets up its Driver Object

• MajorFunction array holds dispatch routines

Obtain minport’s Driver Object to extract function pointer to a

routine that implements reading and writing to raw sectors

• No need to worry about hooks at higher levels

• No need to implement hardware-specific logic

See whitepaper for an alternative approach using PIO

• Communicate directly with disk controller

The Challenge of Hooks

This is a powerful routine

• Great place for rootkits to install hooks

Rootkits may manipulate Driver Object in memory

• Install function pointer hook by replacing dispatch routine in

MajorFunction array

• Install inline hook by modifying the contents of the routine in memory

We need to obtain the original function pointer

Overcoming Function Pointer Hooks

Cannot trust memory contents

• Need to find a trustworthy source of information

Signed executable on disk cannot be modified

Analyze miniport driver on disk

• Retrieve RVA from disk image

• Retrieve base address of loaded image

DriverEntry Initializes Dispatch Routines

Obtaining RVA of Dispatch Routine

Find the instructions that initialize the MajorFunction array

• Retrieve the RVA of the dispatch routine responsible for handling

IRPs of type IRP_MJ_INTERNAL_DEVICE_CONTROL

Recursively disassemble driver on disk

• Recursive approach to include subroutines (local functions)

• Look for instructions that modify memory

• There are some common logic that should always be present

Disassembly of DriverEntry

Searching for the Dispatch Routine

Analyze entire routines, looking for:

• mov [reg + offset], routine

Keep register values

• lea rax, routine

• mov [rsi + E8h] , rax

Critical observation – Some routines are always present

• Power, PnP, DeviceControl, InternalDeviceControl, DriverUnload

• All have fixed offsets within driver object

Search for all offsets within a single routine

• Extract RVA of InternalDeviceControl routine if all 5 are found

Overcoming inline hooks

Knowing the expected contents of a routine enables us to detect

and bypass inline hooks

• Compare disk contents with memory contents

Construct trampoline consisting of original instructions + branch

• Execute original instructions, then pass control to the rest of the

routine

• Use disassembly to ensure we are stealing whole instructions

• Pass control to the next whole instruction following the patch

Interfacing with the Dispatch Routine

 Imitate the next higher driver

Create an IRP

• Miniport will pass it back up when request has completed

• Set an IoCompletion routine that will simply destroy the IRP

Data on request goes into I/O Stack Location

• Command Descriptor Block

• SCSI commands

– READ (10), READ (16)

• Boils down to specifying sector numbers (LBA)

Whitepaper has more details on this

20Copyright © 2013 Blue Coat Systems Inc. All Rights Reserved.

In order to emulate

the boot code we

also need to

emulate the BIOS

Emulating the boot sequence

Emulating the Boot Sequence

Custom BIOS written in 16-bit assembly

• Implements the functionality we expect boot loaders make use of

Emulator provides a separate memory space

• Only accessible the emulated code and the emulator itself

Load MBR into emulator memory at 0:7C00

Load custom BIOS into emulator memory at F000:FC00

Emulation starts at BIOS entry point

• We will emulate the initialization code

• Once complete, transfer control to first instruction of MBR

BIOS Implementation

Set up Interrupt Vector Table (IVT)

• Located at 0:0

Register interrupt vectors for:

• interrupt 10h - Video

• interrupt 13h – Disk I/O

• interrupt 16h – Keyboard

• Dummy routines for the rest

When we emulate an interrupt, our BIOS will handle it

• Break out of emulation loop for interrupt 13h, as we need to

incorporate anti-rootkit techniques for disk I/O

• Emulation resumes when contents has been written to memory

Demo

Typical behavior of MBR boot process when compromised

Debugger UI on top of our emulator ftw

25

Emulating the boot

code reveals

anomalies in its

behavior

No baseline

required

Detecting Anomalies

Interrupt 13h Hooks

Boot code seeks to patch modules not yet loaded

• Hooking interrupt 13h enables intercepting all disk i/o

• Enables patching memory contents on-the-fly

Needs to regain control later in boot process

• Cannot load its kernel mode driver before kernel itself has loaded

• Modify memory in some way to achieve this

• May wait for a certain byte pattern or use other indicators

Emulated code will interact with our custom BIOS

• Will modify our interrupt 13h handler in our IVT

• Check if it is still intact once emulation completes

Patching bootmgr

bootmgr is signed for a reason

When emulation reaches the point where control is passed to it,

its entire contents resides in memory

bootmgr is a special executable

• disk image = memory image

Comparing contents on disk with memory reveals anomalies

• Normally, bootmgr will be patched using an interrupt 13h hook

MBR Replacement Anomaly

Bootkits need the OS to boot

• Make changes, then let normal boot sequence continue

Retrieve original MBR, and load it back to 0:7C00h

• This is where the original MBR expects to be loaded

This results in an anomaly in the behavior of the boot code

30Copyright © 2013 Blue Coat Systems Inc. All Rights Reserved.

Breaking

load chains

Disabling Bootkits

Retrieving Original Boot Sector Contents

Key is to determine what has been changed

• Count number of times 0:7C00 is executed

• MBR case – Stop emulation at second execution of 0:7C00

• VBR/IPL case – Let emulation complete

Retrieve original contents from emulator memory

• Encrypted on disk? No problem!

Replace modified parts with original

• Breaks the load chain

• Reboot system to finish it off

32Copyright © 2013 Blue Coat Systems Inc. All Rights Reserved.

Non-standard boot

loaders complicate

detection

Challenges

Challenges

Non-standard boot loaders that load multiple OSes

• e.g. GRUB requires user input

Full disk encryption solutions

• May require user to enter a password during boot

• Also, often hook interrupt 13h in order to decrypt disk contents

Hard or impossible for our BIOS to make decisions

Detect whenever the boot loader ask for user input

• Boot code will poll for keyboard input using interrupt 16h

• Abort emulation and report that we cannot decide if it is good or bad

Conclusion

Anomalies in boot sectors are detectable by emulation

• Must incorporate anti-rootkit techniques when reading disk

• Counters obfuscation and encryption

• Challenges with non-standard boot loaders

Break rootkit’s load chain to defeat it

• Emulation approach effective at retrieving original contents

UEFI systems are more secure than BIOS systems

• Booting from signed firmware is more secure than relying on

technology from the 1970s

Thank you for your attention!

Special thanks to my co-researcher Leif Arne Søderholm

High five to the rest of the R&D team

Also big thanks to the guys at kernelmode.info

• Great source for rootkit samples!

Questions?

Lars Haukli

Sr. Security Researcher

lars.haukli@bluecoat.com

Twitter: @zutle

