LSAar=2014

The BEAST Wins Again: Why TLS
Keeps Failing to Protect HTTP

Antoine Delignat-Lavaud, Inria Paris
Joint work with K. Bhargavan, C. Fournet, A. Pionti, P.-Y. Strub

INTRODUCTION

» Introduction
» Cookie Cutter
» Virtual Host Confusion
» Crossing Origin Boundaries » Shared Session Cache
» Shared Reverse Proxies » SPDY Connection Pooling
» Triple Handshake
» Conclusion

e 2

1. Authenticati

— Must be talking to the right guy
2. Integrity

— Our messages cannot be tampered
3. Confidentiality
— Messages are only legible to participants

4. Privacy?
— Can’t tell who we are and what we talk about
blgc’:khaf’

B2

1. Authenticatibn

Must be talking to the right guy

2. Integrity

Our messages cannot be tampered

. Confidentiality

Messages are only legible to participants

4. Privacy?
Can’t tell who we are and what we talk about

blgt’::k hat

B2

Active Attacks
(MitM)

Passive Attacks
(Wiretapping)

e Web attacker
— Controls malicious websites

— User visits honest and malicious sites in parallel
— Web/MitB attacks: CSRF, XSS, Redirection...

e Network attacker

— Captures (passive) and tampers (active) packets

blgz:k hat

B2

e Web attacker

— Controls malicious websites

— User visits honest and malicious sites in parallel

— Web/MitB attacks: CSRF, XSS, Redirection...

* Network attacker @D

— Captures (passive) and tampers (active) packets

blggk hat

B2

If 2 website W served over HTTP is secure
against a Web attacker, then serving W
over HTTPS makes it secure against a
network attacker.

blf‘:l?:k hat

B2

against a Web en serving W
over HTTPS ure against a

blf‘:l?:k hat

B2

TLS optiona.l by default in HTTP
Cookies helplessly broken
TLS adds own identity and session systems

— May not agree with the HTTP ones

HTTPS MITM is a beast
— Arbitrary requests, run JS, side channels...

blgz:k hat

B2

* Heartbleed, GnuTLS SID corruption
— No excuse for memory corruption bugs

e “Goto fail”, GnuTLS SA-2014-2, CCS bug

— No excuse for bad implementation of protocol

e Broken PKI (ANSSI, Indian CCA)

— Can’t be helped, but improving overall

blgz:k hat

B2

* Active network attacks against HTTPS

— Public networks
— DNS attacks
— Corporate/ISP proxies

— Governments

* TLS exploits enabled by HTTP capabilities

blgz:k hat

B2

e

e Active netwok attacks again TTPS

— Public networks
— DNS attacks
— Corporate/ISP proxies

— Governments [Beastly Attacks }

* TLS exploits enabled by HTTP capabilities

blggk hat

B2

* Active network attacks against HTTPS

— Public networks Only useful against strongest websites
— DNS attacks (Google, Facebook, Twitter, Amazon...)

— Corporate/ISP proxies

— Governments [Beastly Attacks }

* TLS exploits enabled by HTTP capabilities

blgék hat

B2

* Renegotiation attack [Ray, Rex ‘09]

— Protocol logic flaw; nice cookie exploit

 BEAST [Rizzo, Duong ‘11]
— Adaptive chosen plaintext + block boundary
— Exploits known IV vulnerability

— Can recover encrypted data

blgz:k hat

B2

¥

 CRIME/BREACH [Rizzo Duong ’‘12; Prado et al “13]
— Adaptive chosen plaintext + Length side channel
— Timing variant TIME [Be’ery, Shulman ‘13]

* Padding Oracle [Vaudenay ‘02]
— Timing variant Lucky13 [Al Fardan, Paterson et al. ‘13]

 More timing attacks are likely

blgz:k hat

B2

COOKIE CUTTER

CANCEL HSTS AND STEAL SECURE SESSION COOKIES

v' Introduction
» Cookie Cutter
» Virtual Host Confusion
» Crossing Origin Boundaries » Shared Session Cache
» Shared Reverse Proxies » SPDY Connection Pooling
» Triple Handshake
» Conclusion

e Attack: SSL stripping [Marlinspike, BH'09]
— Attacker proxies HTTP requests to HTTPS server

* Defences:
— Strict Transport Security (HSTS)

— HTTPS Everywhere and similar extensions

— User awareness

blgz:k hat

B2

o

Shared HTTP/HTTPS cookie store

Cookies don’t follow SOP

— No port; non-public DNS suffix of domain

‘secure’ flag: don’t send over

HTTP

Server can’t tell if set over H

blgt’::k hat

B2

PorH

“HTTPS is insufficient to prevent a network attacker
from obtaining or altering a victim's cookies [...]; by
default, cookies do not provide confidentiality or

integrity from network attackers, even when used in
conjunction with HTTPS.”

Adam Barth, RFC 6265

blggk hat

B2

* I[mpact has increased in modern applications

— Asynchronous actions (AJAX)
— No user feedback to session replacement
— User data sent to attacker account

* Defeats many CSRF protections too

— The deputies are still confused, Lundeen, BHEU’13

blggk hat

B2

Do not use cookies

* Use HSTS (not HTTPS Everywhere)

— With includeSubDomains option
— On top-level domain of website

— Do not use any subdomain (unless sent to top once)
* Bind cookie to TLS channel (Chrome: Channel ID)

blgz:k hat

B2

Alice

http://docs.google.com/A

Google

A

https://accounts.google.com/login?goto=http://docs.google.com/A

\ 4

POST /login HTTP/1.1 [...] user=alice&password=123456&goto=...

TCP RS ET>

-\

Mallory
|
Fragment £ HTTP/1.1 302 Redirect [...]
Location: http://doc.google.com/A
Set-Cookie: SID=beefcafe133
|
Fragment 2

7; domain=.google.com; secure; httpOnly;
Connection: Keep-Alive

You are being redirected to doc.google.com ...

\ 4

Alice Mallory Google

http://docs.google.com/A | http://docs.google.com/A?XXXXX

>

A 4

https://accounts.google.com/login?goto=http://docs.google.com/A?XXXXX

A

POST /login HTTP/1.1 [...] user=alice&password=123456&goto=...

\ 4

HTTP/1.1 302 Redirect [...]
Location: http://doc.google.com/A?XXXXX
Set-Cookie: SID=beefcafe1337; domain=.google.com

Fragment 2 ; secure; httpOnly;
Connection: Keep-Alive

Fragment 1

TCP RS ET>

-\

You are being redirected to doc.google.com ...
I

2 . s root@argon: ~/tls-mitm
@ Help x ¥ 2 :
/ \ root@argon:~/tls-mitm# tail -f log
&« &y help
About
N
@ Chromium Portable
A web browser built for speed, simplicity, and security
Get help with using Chromium Portable Report an issue
| e
Chromium Portable
©2 2013 The Chromium Portable Autho Aluisio Augusto Silva Gong All rights res

pe

Chromium Portable is made possible by the

Elements Resources Network | Sources Timeline Profiles Audits Console
Size Time

Name Met... Sta.t.us Type Initiator Timeline

tivi

WebSockets Other

Scripts XHR Fonts

Documents Stylesheets Images

e

. TLS weakness: truncation [Wagner, WEC’'96]
— TLS (close _notify alert) vs TCP (RSET) termination
— Well known (Pironti, BH’13)

e HTTP weaknesses

— Plaintext injection (e.g. semi-open redirector)
— Security depending on presence of header/flag
— Liberal parsing of malformed HTTP messages

blggk hat

B2

* |f browser accepts the truncated cookie, it is
stored without the secure flag

* Need an HTTP request to sniff cookie

 What about HSTS?
— Strict-Transport-Security: max-age=10000; incl...
— Truncate max-age to get rid of HSTS in <10s

blgz:k hat

B2

Reject malformed HTTP messages / headers
Enforce close notify (chunked encoding?)

Chromium: CVE-2013-2853
Safari: APPLE-SA-2014-04-22-1
IE and FF correctly reject truncated headers

blgt’::k hat

B2

blac
USA 2014 g

VIRTUAL HOST CONFUSION

BREAK SAME ORIGIN POLICY AND CERTIFICATE VALIDATION

v' Introduction
v’ Cookie Cutter
» Virtual Host Confusion
» Crossing Origin Boundaries » Shared Session Cache
» Shared Reverse Proxies » SPDY Connection Pooling
» Triple Handshake
» Conclusion

Certification path

—] VeriSign
: —.4J VeriSign Class 3 Extended Validation
____|J |l:|gir|.|i'-.-'E.|:|:|n-|

Endpoint certificate

Intermediate CA certificate

Root Certification Authority certificate

blgék hat

B2

3

e Apple Securé Transport: “goto fail” (2014)
GnuTLS: check_if ca (2014)

NSS (and others): null byte in CN (BH 2009)

IE: CA constraint ignored (2002)

Path length, key usage, signature, revocation...

blggk hat

B2

31 Scores

Cluster Properties
Cluster ID: c_80
Cluster Size:

Totient ID of Center.

s of weak keys

SN entropy:

Avg notBefore: Sat Har 2
Template:

Serial

Signature

With M. Abadi, A. Birrell, I. Mironov,
T. Wobber and Y. Xie (NDSS’14)

et %

Policy Score None

°

AddTrust E@al CARoO} .
. .

o thawte Pri

°

AddedExtendedKeyUsage

Close

\/efri.Sign°CIa§s 3 Public Pri@ Certification Authority - G5 *,

.. °

;ap\dﬂS‘S‘;L CA
GeoTrugt Global CAgg - »
s c %

n(r’na\q' nal S

blackhat

B2

Web 2012

¥

* BlackHat: 2009, 2010, 2011, 2012

— Marlinspike, Sotirov, Jarmoc, Hansen...

e Academic papers (see e.g. Clark et al. survey)

* Certificate Transparency, DANE, TACK,
Perspectives, Convergence, ...

blgz:k hat

B2

Backgr

HTTPS Multiplexer

(IP1, Porti)

(IP2, Port2)

(IPk, Portk)

Certificates

Ticket Keys

Session Cache

Virtual Host 1

Virtual Host 2

Virtual Host n

Request processing
Produce response

https://x.y.com:4443/u/v?a=K&b=L#hash

Routing Kept by
Select virtual host Browser

blggk hat

B2

Client nonce, Supported ciphers, (SNI)

(key exchange)

Server nonce, cipher, [SID], certificates,

Certificates, key exchange, cert verify, CCS, finished

—a

[Session Ticket], CCS, finished

Client .
& blgk hat erver

E=EE =<

Client nonce, Ciphers, (SNI, ticket), SID

ccs, finished

Server nonce, cipher, [SID], (New ticket),

CCS, finished, data

Client

blgt’::k hat

B2

:

Server

Z3

* Transport Iayr

— Server Name Indication (SNI)
— Certificate (union of CN and SAN)

— Session identifier
— Session Ticket

* Application layer
— Host header

blgt’::k hat

B2

IP address and port
Name (for SNI and Host header)

Certificate
Session cache, session ticket key
Ciphers, client authentication, OCSP staple ...

blgz:k hat

B2

< 4
“ils

e (IP, port) of request = (IP, port) of chosen host

* TLS settings picked from host whose name
matches SNI, or default (fallback)

* Request is routed to host whose name
matches Host header, or default (fallback)

blggk hat

B2

* Fallback: no guarantee selected host was
intended to handle the request:

— Could be meant for different port

— Could be meant for different IP address that
shares the same certificate (or overlapping one),
session database or ticket encryption key

 Known vector [Jackson, CCS'07]

blggk hat

B2

e Two TLS servers on the same domain but on
different ports

— Port always ignored in Host header.
— Attacker can redirect freely between ports
— Port is essentially useless for same-origin policy

blgz:k hat

B2

* One certificate {x.a.com, y.a.com} (or *.a.com)

* Server at IP X only handles x.a.com
* Server at IP Y only handles y.a.com

— Attacker can redirect packets from Xto Y

— Server at Y returns a page from y in x.a.com origin

blgz:k hat

B2

e TLS weaknesses

— Resumption authenticates nothing (not even SNI)
— Downgrade to SSL3 to get rid of SNI and ticket
— Multi-domain and wildcard certificates

e HTTP weakness

— Virtual host fallback: a request for x.com should not
return a page meant to be served on y.com

blgz:k hat

B2

R

Virtual host confusion can transfer weaknesses
and vulnerabilities (e.g. XSS, user contents,
open redirectors, cross-protocol redirections,

X-Frame-Options, CORS, ...) across origins

— Transfer XSS in mxr.nozilla.org to addons
(Hansen & Sokol, HTTPS Can Byte Me, BH’10)

blggk hat

B2

CROSSING ORIGIN BOUNDARIES

STEAL OAUTH/OPENID TOKENS, SECRET URL FRAGMENTS...

v' Introduction
v’ Cookie Cutter
» Virtual Host Confusion
» Crossing Origin Boundaries » Shared Session Cache
» Shared Reverse Proxies » SPDY Connection Pooling
» Triple Handshake
» Conclusion

 OAuth rediret_uri access control is origin based
* |f the token origin can be confused with any
origin with a redirect-to-HTTP, attacker wins

— Token is in URL fragment (preserved by redirection):
attacker can inject script in HTTP response to steal it

* Cross-protocol redirection should be avoided
— Attack built into Google: nosslsearch.google.com

blggk hat

B2

Alice

https://www.facebook.com/dialog/oauth?client_id=X&redirect_uri=U

Facebook

\ 4

A

HTTP/1.1 302 Location: U = https://www.pinterest.com/#token=XXX

Htoken=XXX

https://www.pinterest.com

Mallory

*.pinterest.com

api.pinterest.com

https://www.pinterest.com

A 4

HTTP/1.1 302

HTTP/1.1 302

Location: http://api.pinterest.com

A

http://api.pinterest.com

Location: http://api.pinterest.com

root@argon: ~

root@argon:~# ping www.pinterest.com
PING pinterest.com (174.129.239.78) 56(84) bytes of data.

°c

-—-— pinterest.com ping statistics ---

1 packets transmitted, 0 received, 100% packet loss, time Oms

root@argon:~# ping api.pinterest.com

PING api-origin.pinterest.com (54.225.157.104) 56(84) bytes of data.
£e

--— api-origin.pinterest.com ping statistics ---

2 packets transmitted, 0O riyeived, 100% packet loss, time 1006ms

root@argon:~#% I

* Host confusion with user content origin

e Common to use different top-level domain to
avoid related-domain cookie attacks

— dropboxusercontent.com, googleusercontent.com

* User content origins should use separate

certificates

blgt’::k hat

B2

* Data on the user’s own account is often on a
higher trust domain to access session cookie

— Dropbox: own files on dl-web.dropbox.com

e Short lived cookie forcing allows temporary
forcing of attacker session
— Break into high trust origin, recover victim session

blggk hat

B2

<« C A | & hitps://www.dropbox.com/home/Shared#This is the attacker's Dropbox w e

Files %% > Shared G 8 88 & B | Q Searen

s Phiotos

{# Sharing
@ Links
&) Events

Get Started

. Attacker stores malicious file on his account

. Temporary forcing of attacker session on victim

. Rebind www.dropbox.com to dl-web.dropbox.com
. Compromise victim’s session

Help Privacy More &

T M R i e it g = W1 1 Ry Pl gy

~ WO N -

http://www.dropbox.com/

‘

UsA 204

EXPLOIT: SHARED SESSIO

CONFUSE ORIGINS ACROSS CERTIFICATES

N CACHE

v’ Introduction
v Cookie Cutter
» Virtual Host Confusion
v’ Crossing Origin Boundaries » Shared Session Cache

» Shared Reverse Proxies » SPDY Connection Pooling
» Triple Handshake
» Conclusion

<3

e 3 kinds of TL authentication:
— Certificate
— Valid session identifier in server cache

— Valid session ticket encrypted by server key

* |f a session cache or ticket key is shared across
servers with different hosts, certificate check can
be completely bypassed

blggk hat

B2

3 3 23 -
s — e, i}’.“.}*{ <= 2
3 5 \
e' v a ’:"
7

e
S
3
O

* Session cache sharing more common than
ticket key sharing across servers

— Seen on Amazon, Mozilla and Yahoo servers

* To exploit, downgrade connection to SSL3

— Tickets have precedence over session identifier

blggk hat

B2

1. Create SSL3 session on bugzilla.mozilla.org
2. Point bugzilla.mozilla.org to git.mozilla.org
3. Resume session and request malicious file
4. Virtual host fallback

EXPLOIT: SHARED REVERSE PROXY

IMPERSONATE THOUSANDS OF TOP RANKED WEBSITES

v' Introduction
v’ Cookie Cutter
» Virtual Host Confusion
v’ Crossing Origin Boundaries v~ Shared Session Cache
» Shared Reverse Proxies » SPDY Connection Pooling
» Triple Handshake
» Conclusion

e Shared reverse proxies are common (e.g. CDN

* Handling of TLS is always awkward
— CloudFlare: domain packing in one certificate
— Akamai: dedicated IP for customer certificate
— Google Apps: SNI (or dedicated IP)

e What is the fallback virtual host?

— Akamai: default host is an open proxy (!)

blggk hat

B2

Demo:

* Do not mix low-trust and high-trust
(sub)domains in certificates

* Configure a fallback host on every IP, that
returns an error code (not a redirection)

— Nginx: default_server option of listen directive
— Apache: first VirtualHost that matches IP/port

blgk hat

B2

* Server-side cache only required for SSL3 and can
often be disabled

— If required, server should have proper cache partition

or let admin configure explicit shards (shared:XYZ:1m)

With a server-wide ticket key, make sure all
servers have the same configured hosts

— |solation of name-based hosts is weak in TLS

blgk hat

B2

SPDY CONNECTION POOLING

WHO'’S CONFUSING WHAT NOW?

v' Introduction
v’ Cookie Cutter
» Virtual Host Confusion
v’ Crossing Origin Boundaries v~ Shared Session Cache
v’ Shared Reverse Proxies » SPDY Connection Pooling
» Triple Handshake
» Conclusion

* Problem: websites use subdomains for origin
isolation; requires a handshake for each

* |dea: let’s reuse sessions even for requests to
a different domain if:
1. New domain covered by initial certificate

2. DNS points to same server

blgz:k hat

B2

https://i.w.com/x

https://i.w.com/x

https://w.com/y

Server1

https://w.com/y

Browser

w.com

i.w.com

[

Server 1

Browser

~_

Server 2

w.com
i.w.com

https://fb.com/t

Server 2

~

LM/ https://fb.com/t

blgék hat

B2

| fb.com

* None of the security theorems proved on TLS
apply to browsers that reuse connections

e Every session-specific guarantees extends to
all domains in the session’s certificate

e Standard in current HTTP2 IETF drafts

blgt’::k hat

B2

Sorry, not patched yet

blgt’::k hat

B2

TRIPLE HAN DSHAKE

BREAKING CLIENT CERTIFICATE AUTHENTICATION

v' Introduction
v’ Cookie Cutter
v" Virtual Host Confusion
v’ Crossing Origin Boundaries v~ Shared Session Cache
v’ Shared Reverse Proxies v SPDY Connection Pooling
» Triple Handshake
» Conclusion

&

&
Lo
© Raed667

Handshake creates new TLS session
Key exchange yields pre-master secret (PMS)

Master secret: hash of PMS and nonces

Session parameters: PMS, client & server
certificates, cipher, session identifier

blggk hat

B2

Handshake (New TLS Session)

Handshake (New TLS Session)

GET /malicious/action HTTP/1.1
X-lgnore-This:

Renegotiation

>

GET /legitimate/action HTTP/1.1
Cookie: SID=xyz

blgz:k hat

B2

* TLS Weakness
— Renegotiation doesn’t bind old and new sessions
— Implementations allow server certificate to change
— Implementations concatenate data across sessions

e HTTP Weakness

— Message format is unstructured: can inject prefix

blgz:k hat

B2

* Mandatory renegotiation indication extension
* SRI =verify_data (hash of message log) of

latest handshake on current connection
* SRI binds new TLS session to previous one

* Fresh connection: empty SRI

blggk hat

B2

Triple Handshake Attack

PRl
4
U o

synchronize

blggk hat

B2

User u Attacker
Client C Server M Server S

TLS Handshake TLS Handshake

TLS session (sid): TLS session (sid):
anon(C') — certyy anon(M) — certg
ms, cr, ST ms, cr, ST

i *

blgt’::k hat

B2

e C<->M and M <->S use same PMS
— RSA: M re-encrypts C’s PMS under S’ public key
— DHE: M sends degenerate group parameters

e PMS, MS, sid aren’t unique to a TLS session

blgz:k hat

B2

User u Attacker
Client C' Server M Server S

Resume(sid) R Resume(sid)

Resumed (sid): Resumed (sid):
anon(C) — cert s anon(M) — certg
ms,cr’, sr', cvd, svd ms,cr’, sr', cvd, svd

* *

blgt’::k hat

B2

e ResumeC<->MonC<->8S

— TLS resumption doesn’t preserve authentication

* M doesn’t need to tamper any message: C and
S agree on the same verify data

* tIs-unique binding broken after resumption

blgz:k hat

B2

User u Attacker

Client (* Server M Server §

Renegotiate(ceric)

Data

Renegotiate(ceric)

-

TLS session:
certe = certg

TLS session:
certe — certg

T
.

0

blackhat

B2

Data (injected by M) =
GET /secret/data HTTP/1.1
Host: S

X-lgnore-This:

Data’ (sent by C) =
GET / HTTP/1.0
Host: M

Sl
ST

* M can trigger C<->S renegotiatin
— Certificate can still change
* |f S asks for client certificate, C thinks she logs

in on M, but actually authenticatesto S

* M can inject data to S before renegotiation
— Implementations still concats data across sessions

blggk hat

B2

@ maxg@argon: /var/prosecco/projects/tls-sessions/3rdparty/gnutls-3.2.4/doc/examples =
maxg@argon: /var/prosecca/projects/tls-sessions/3rdparty/gnutls-3.2.4/doc/examples$./ex-serv-x509
+++ Initialized session cache

#%% Server ready. Listening to port '443'.

For quick access, place your bookmarks here on the bookmarks bar. Import bookmarks now...

You've gone incognito. Pages you view in this window won't appear in your browser history or search
history, and they won't leave other traces, like cookies, on your computer after you close all open
incognito windows. Any files you download or bookmarks you create will be preserved, however.

Going incognito doesn't affect the behavior of other people, servers, or software. Be wary of:

* Websites that collect or share information about you

o Internet service providers or employers that track the pages you visit

+ Malicious software that tracks your keystrokes in exchange for free smileys
* Surveillance by secret agents

+ People standing behind you

Learn more about incognito browsing.

Because Google Chrome does not control how extensions handle your personal data, all extensions have
been disabled for incognito windows, You can reenable them individually in the extensicns manager.

T

e Conditions
— Cis willing to authenticate on M with her certificate
— Cignores certificate change during renegotiation
— S concatenates the data sent by M and C

* Impact
— M can inject malicious data authenticated asCon S

blgz:k hat

B2

* Ccan block server certificate changes
— Chomium (CVE-2013-6628)
— Safari (APPLE-SA-2014-04-22-2) EEE—
— Internet Explorer (KB257591) session-hash

 We propose MS’ = PRF(PMS, tls-session-hash)

— tls-session-hash = hash of the handshake messages
that created the session up to client key exchange

blggk hat

B2

CONCLUSION

WHY TLS FAILS TO PROTECT HTTP

v' Introduction
v’ Cookie Cutter
v" Virtual Host Confusion
v’ Crossing Origin Boundaries v~ Shared Session Cache
v’ Shared Reverse Proxies v SPDY Connection Pooling
v’ Triple Handshake
» Conclusion

oy 3

— Parsing is security critical, malformed = reject

e Security should not rely on anything being
present (additions can relax security)

* Beware of side-effects on data processed
before its integrity is confirmed

blggk hat

B2

* We want:

— Routing to only depend on authenticated inputs
— Consistent routing on servers sharing credentials

* Your job to achieve authenticated, consistent
routing in current HTTPS software

 Beware of the “same-certificate policy”
— Same-certificate attacker is possible!

blgt’::k hat

B2

=
5

* We have a big TLS API problem

— TLS isn’t just a drop-in socket replacement
— All difficult problems handed off to the application

* Crypto values from handshake (PMS, MS, SID,
verify data) don’t identify session or participants

— Will be fixed; lesson learned for TLS 1.3

blggk hat

B2

* miTLS: verified TLS implementation
— No more “goto fail” bugs
— Performance vs “heartbleed” trade-off

* Verified protocol libraries
— TLS APl is too difficult for applications to use
— Verify TLS + thin protocol wrapper together

* WebSpi, F*: evaluating the security of websites

blggk hat

B2

Google

Mozilla
Microsoft
Facebook

QUESTIONS

Thanks

HackerOne Adam Langley Alex Rice
Dropbox Piotr Sikora Stephen Ludin
Akamai Anton Mityagin Eric Rescola
Apple Brian Sniffen Ryan Sleevi

