
Adi Hayon 
Tomer Teller 

 



Why are we here? (one of many reasons) 

 A malicious program: 

 Allocates memory in a remote process (and write to it) 

 Executes the code in that memory region 

 Frees the code 

 Memory dump taken at the end of execution 

 No malicious artifacts found in post-mortem 
analysis 



Why are we here? (one of many reasons) 

 Snake/Uroburos rootkit (MD5: 626576e5f0f85d77c460a322a92bb267) 

 Inline interrupt hooks 

 Zeroed image header  

 This evades file carving 



Setting the Context 
 Automated system analyzes a new sample  

 Static Analysis - no significant results  

 Dynamic Analysis - no significant results 

 Memory Analysis – limited results 

 Evasion tricks are out of scope 

 Focus is on memory analysis enhancement 



Static Analysis Challenges 
 Time consuming  

 35%~ of malicious samples are packed* 

 90%~ of packed files are protected 

 Obfuscation, Cryptors, Encrypted Resources 

 

 

 

 

 

 
* https://media.blackhat.com/bh-us-12/Briefings/Branco/BH_US_12_Branco_Scientific_Academic_Slides.pdf 



Dynamic Analysis Challenges 
 “What you see is what you get” 

 Subverting API functions is easy. APIs Lie. 

 Calling undocumented/native functions 

 Custom WinAPI function implementations 

 Reminder: evading dynamic analysis is out of scope 



Memory Analysis Advantages 
 Discovers system inconsistencies that might 

indicate  a rootkit 

 Collects hidden artifacts that cannot be retrieved 
using OS-provided API 

 Advanced malware operates solely in memory 

 Identifies system activity and overall machine state 



Memory Analysis Disadvantages 
 Current solutions require manual inspection (not 

scalable) 

 Interpreting analysis tools output requires in-depth 
knowledge of OS internals 

 Anti-Forensics tools exist* to: 
 Prevent grabbing of memory dumps 

 Plant fake artifacts in memory as decoys 

 Artifacts from a single memory dump lack context, 
since there is no baseline to compare it with 

 Taking memory dumps requires accurate timing as 
memory is volatile 

* http://scudette.blogspot.co.il/2014/02/anti-forensics-and-memory-analysis.html 



Current Automated Approach  
 Execute a sample in a sandbox 

 Terminate execution after X minutes 

 Grab a memory dump of the machine 

 Analyze the memory dump offline  

 Detect malicious/suspicious artifacts in-memory 

 Revert, Rinse, Repeat 



Memory Dump Timing Challenge 
 Post-mortem memory dumps (after the program 

terminates) risks “missing in on the action” 

 Malicious artifacts may appear and disappear 
intermittently 

 Example:  

 Memory region is allocated with RWE permissions 

 Code is written to that region and executed 

 Malware unload itself 

 Detecting the additionally code at the end will fail 



Possible Solution 
 Interval-Based memory dump 

 Grab a memory dump every X seconds  

 Analyze each dump - search for malicious artifacts 

 Does it solve the problem? No 

 Malware can slip between the intervals 

 Many dumps to analyze make it inefficient (Time/Space) 

 

 Dump 2 
00:00:20 

Dump 1 
00:00:10 

Dump 3 
00:00:30 

Dump 4 
00:00:40 

Dump 5 
00:00:50 

. . . 



Better Solution 
 Trigger-Based memory dump 

 Dump memory when something “interesting” happens  

 “Interesting” points in time: 
 Known malicious API-sequence (behaviors) in user/kernel mode 

(e.g. Code injection, hollow process)  

 Evidence cleaning attempts 
(e.g. Process Termination, Un-mapping memory, etc.) 

 “Heavy” mathematical computation  
(e.g. unpacking in progress) 

 Sampling CPU performance counters for abnormal process activity 

Dump 2 
Triggered by CPU activity 

Dump 1 
Triggered by API X 

Dump 3 
Triggered by a XOR loop 

Dump 4 
Triggered by API Y 

Dump 5 
Triggered by … 



Differential Analysis 
 Analyze each dump for malicious artifacts 

 Diff all dump analysis results from last to clean 

 Clean: Taken before Malware execution 

 Last: Taken when time exceeded 

 Produce a list of New/Modified/Deleted artifacts 

 Visualize! 

 

 

 

Dump 0 
Clean Dump 

Dump n 
Last Dump 

Dump 2 
Triggered by CPU activity 

Dump 1 
Triggered by API X 

Dump 3 
Triggered by a XOR loop 

Dump 4 
Triggered by API Y 

Dump 5 
Triggered by … 



Our Approach  
 Execute a sample in a controlled environment (CE) 

 Trace and monitor execution 

 When a trigger is detected 

 Suspend CE -> Dump Memory -> Resume CE 

 Before the sample terminates 

 Suspend CE -> Dump Memory -> Terminate CE 

 Differential Analysis 

 Clean Dump vs. Dump #1 vs. Dump #2, .. vs. Final Dump 

 Generate Report 



DEMO #1 - Showcase Malware 
 Trigger-Based vs. Interval-Based 

 Differential analysis 

 Visualization 



Differential Analysis Plugins 
 Process Heap Entropy checker 

 Check for entropy changes over time 

 Anti Virus Strings 
 Check for new unpacked strings  

 Hybrid Data Extractor 
 Comparing code in-memory (dynamic) against the code 

on disk (static) to detect unpacked code/data 

 Modified PE Header 
 Monitor PE header modification and reconstruct it on-

the-fly 



Taking a (memory) Dump 
 Live Memory Introspection (libVMI/pyVMI) 

 Suspend CE 

 Query memory directly 

 Resume CE 
 

 Offline Memory Dump (libvirt) 

 Suspend CE 

 Dump memory to disk 

 Resume CE 

 

 

https://code.google.com/p/vmitools/ 



DEMO #2 - Advanced Features 
 Trigger-based analysis with VMI 

 Hybrid Analysis (Dynamic + Memory) 

 Artifact dumper 



DEMO #3 – SNAKE/Uroburos Rootkit 
 Kernel Triggers 

 PE header reconstruction  

 Artifact dumper 



Implementation 
 Modified Cuckoo Sandbox v1.1  

 Modified Cuckoo/CuckooMon components 

 New hooks in User/Kernel Mode 

 New static analysis scripts  

 IDA integration (e.g. calculate MD5/ssdeep per function/section) 

 PinTool integration for DBI 

 New Volatility plugins for differential analysis 
 

The techniques are generic and can be applied to any sandbox - Read the WP 

 

 

 
https://github.com/djteller/MemoryAnalysis 

https://github.com/djteller/MemoryAnalysis


Future Work 
 Brainstorming & Implementing new triggers 

 Automatic verdict (malicious/benign) 

 Plug-in framework 

 Optimization (e.g. grabbing mini-dumps) 

 Extend (non-intrusive) VMI capabilities 

 Define new operations for misbehavior analysis 

 Port solution to other automated malware systems 



Thank You 
 Slides 

 White Paper 

 Code 

 
https://github.com/djteller/MemoryAnalysis 

@djteller  @adihayon1 

 

 

https://github.com/djteller/MemoryAnalysis
https://github.com/djteller/MemoryAnalysis
https://github.com/djteller/MemoryAnalysis
https://github.com/djteller/MemoryAnalysis

