
The Veil-Framework

Will (@harmJ0y)

Veris Group – Adaptive Threat Division

The Veil-Framework

¤ A toolset aiming to bridge the gap between
pentesting and red teaming capabilities
¤ Veil-Evasion: flagship tool, generates AV-

evading executables
¤ Veil-Catapult: initial payload delivery tool
¤ Veil-PowerView: situational awareness with

Powershell
¤ Veil-Pillage: fully-fledged post-exploitation

framework

Veil-Evasion

#avlol

The Initial Problem

¤ Antivirus doesn’t catch malware but
(sometimes) catches pentesters

Our Initial Solution

¤ A way to get around antivirus as easily as
professional malware

¤ Don’t want to roll our own backdoor each time

¤ Find a way to execute existing shellcode/our
stagers in an AV-evading way

Twitter Reaction

Veil-Evasion’s Approach

¤ Aggregation of various shellcode injection
techniques across multiple languages
¤ These have been known and documented in

other tools

¤ Focused on automation, usability, and
developing a true framework

¤ Some shellcodeless Meterpreter stagers and
“auxiliary” modules as well

V-Day

¤ Since 9/15/2013, we’ve release at least one
new payload on the 15th of every month

¤ 30+ currently published payload modules

¤ 20+ additional payloads have been developed
so far

¤ we’re going to be releasing for a while :)

Veil-Catapult

Payload Delivery

Veil-Catapult

Veil-Catapult

¤ Our basic payload delivery tool, released at
Shmoocon ’14

¤ Tight integration with Veil-Evasion for on-the-fly
payload generation, can upload/execute or
host/execute

¤ Cleanup scripts generated for payload killing
and deletion

¤ Now obsoleted with the release of Veil-Pillage

Veil-PowerView

Situational Awareness with Powershell

Veil-PowerView

¤ A pure Powershell situational awareness tool

¤ Arose partially because a client banned “net”
commands on domain machines

¤ Otherwise initially inspired by Rob Fuller’s
netview.exe tool
¤ Wanted something a bit more flexible that

also didn’t drop a binary to disk

¤ Started to explore and expand functionality

Get-Net*

¤ Full-featured replacements for almost all
“net *” commands, utilizing Powershell AD
hooks and various API calls
¤  Get-NetUsers, Get-NetGroup, Get-NetServers,

Get-NetSessions, Get-NetLoggedon, etc.

¤ See README.md for complete list, and
function descriptions for usage options

Meta-Functions

¤  Invoke-Netview: netview.exe replacement

¤  Invoke-ShareFinder: finds open shares on the
network and checks if you have read access

¤  Invoke-FindLocalAdminAccess: port of
local_admin_search_enum.rb Metaspoit
module

¤  Invoke-FindVulnSystems: queries AD for
machines likely vulnerable to MS08-067

User Hunting

¤ Goal: find which machines specific users are
logged into

¤  Invoke-UserHunter: finds where target users or
group members are logged into on the network

¤  Invoke-StealthUserHunter: extracts
user.HomeDirectories from AD, and runs Get-
NetSessions on file servers to hunt for targets
¤  Significantly less traffic than Invoke-UserHunter

Domain Trusts

¤ PowerView can now enumerate and exploit
existing domain trusts:
¤  Get-NetForestDomains: get all domains in the forest
¤  Get-NetDomainTrusts: enumerates all existing domain

trusts, à la nltest

¤ Most PowerView functions now accept a
“-Domain <name>” flag, allowing them to
operate across trusts
¤  e.g. Get-NetUsers –Domain sub.test.local will

enumerate all the users from the sub.test.local domain
if an implicit trust exists

Veil-Pillage

Post-exploitation 2.0

Veil-Pillage

¤ A post-exploitation framework being released
at Defcon

¤ Multiple trigger options (wmis, psexec, etc.)

¤ Completely modular, making it easy to
implement additional post-exploitation actions

¤ Comprehensive logging and cleanup
capabilities

exe_delivery

¤ Catapult functionality ported to Pillage

¤ Executables can be specified, or generated
with seemless Veil-Evasion integration

¤  .EXEs are then uploaded/triggered, or hosted/
triggered with a \\UNC path
¤  This gets some otherwise disk-detectable .EXEs right by

some AVs

powersploit/*

¤ Several PowerSploit modules are included in
Pillage

¤ A web server is stood up in the background
¤  the ‘IEX (New-Object

Net.WebClient).DownloadString(...)’ cradle is
transparently triggered

¤ Makes it easy to run PowerSploit across multiple
machines

Hashdumping

¤ Different approaches work in different situations

¤ Dependent on architecture, Powershell
installation, AV-installation, etc.

¤ Some involve dropping well-known, close-
sourced tools to disk
¤  sometimes this is needed, but we want to stay off

disk as much as possible

Hashdumping: Pillage Style

¤ Let’s aggregate some of the best techniques
and build some logic in:

 if (powershell_installed) { Powerdump/PowerSploit}

 else { determine_arch {
 host/execute appropriate binaries } }

¤ Expose these techniques to the user for
situation-dependent decisions

Questions?

¤  harmj0y@veil-framework.com
¤  @harmj0y

¤  harmj0y in #veil/#armitage on freenode

¤  https://www.veil-framework.com

¤  Get the Veil-Framework:
¤  Github: https://github.com/Veil-Framework/

¤  Read more: https://www.veil-framework.com

