
ModProfiler: Defending Web

Applications from 0-day Attacks
Signatures out. Traffic profiling in.

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

http://www.modsecurity.org/projects/modprofiler

About Us

Ivan Ristić and Ofer Shezaf, Breach Security

 Web application firewall experts:
 Ivan created ModSecurity, the most popular WAF on earth,

and wrote “Apache Security” by O‟reilly.

 Ofer created WebDefend, the first and most advanced
behavioral based WAF.

 Web application security leaders:
 Officers, the Web Application Security Consortium

(WASC)

 Lead OWASP chapters in London & Israel
respectively.

 Open source & community projects:
 Ivan leads the WASC Web Application

Firewall Evaluation Criteria (WAFEC) project. leader.

 Ofer leads the WASC Web Hacking
Incidents Database (WHID) project.

http://www.modsecurity.org/projects/modprofiler

Breach Security
Technology Leaders

 Breach is a leading WAF

vendor.

 Sole focus is web application

security since 1999.

 Managed by an experienced

group of security professionals.

 Best application security DNA

in the industry. We wrote the

books.

 Home to ModSecurity, the open

source WAF.

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART I: THE PROBLEM DOMAIN

http://www.modsecurity.org/projects/modprofiler

Why are Web Applications

Inherently Insecure?

 Applications are vulnerable:

 Unique, each one exposing its own

vulnerabilities.

 Change frequently, requiring constant

tuning of application security.

 Complex and feature rich with the advent

of AJAX, Web Services and Web 2.0.

 Applications are threatened:
 New business models drive “for profit”

hacking.

 Performed by professionals enabling
complex attacks.

 Potential impact may be severe:
 Web applications are used for sensitive

information and important transactions.

 Attack may target site customers.

http://www.modsecurity.org/projects/modprofiler

What are we doing about it?
Web Application Security through the application lifecycle

Ensuring
code is

secure by
training

developers

Inspecting
applications for
vulnerabilities:

automated/
manual/

code review/
pen testing

Real time
protection
using Web

Applications
Firewalls
(WAFs)

• Programmers are not security experts.

For example, they do not understand

CSRF.

• Security is always a secondary goal.

• Code developed externally due to

outsourcing, M&A and packaged

software.

• Very expensive to perform

comprehensively: requires

considerable expertise and time.

• Needs to be performed on each

change in the application.

• The cheapest solution.

• Last barrier for everything that

sneaks through coding and testing.

• Can they be effective?Can WAFs be effective?

http://www.modsecurity.org/projects/modprofiler

To Be Effective, WAFs need to:

 Provide protection against all attacks, both

known and unknown.

 Be easy to use:

 Work automatically, with little or no involvement from

the user.

 Allow for manual updates as needed.

 Have a low rate of false positives.

 Be production grade.

http://www.modsecurity.org/projects/modprofiler

WAF Protection Strategies

 Negative security model: allow all, deny what's wrong

 Web specific IPS:
► Simple concept, generic to all applications and provides instant security.

► Based on rules instead of signatures: full parsing, complex logic, anti-
evasion.

 Difficult to guard against every attack variant and evasion attempts.

 Positive security model: deny all, allow what's right

 An independent input validation envelope for web applications.

 Provides the best protection.

 Hard to implement:
► Rules must be written specifically for each page in the application.

► Rules needs to be maintained as the application changes.

 Easy to write for specific vulnerabilities (virtual patching)

 Learning is needed to effectively use the positive model.

http://www.modsecurity.org/projects/modprofiler

Case study: The „1=1‟ Signature

 Classic example of an SQL injection attack

 Many IPS solutions include a signature to detect this attack.

 The tautology ensures that the injected query returns „true‟ .

 A WAF would easily overcome these evasions:

 Encoding: 1%3D1,

 Including white space characters: 1 =%091

 Adding SQL inline comments: 1 /* comment */ = 1

 But it is impossible to create a signature for every tautology:

 1+1=2, 2 > 1 and for some databases just 1 or Ivan.

 A positive security rule will provide the best security:

<LocationMatch :"/login.php$">
SecRule ARGS:username “!^\w+$” “deny,log"

>/LocationMatch>

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART II - MODSECURITY

http://www.modsecurity.org/projects/modprofiler

What is ModSecurity?

 The most popular WAF in
the world with (a lot) more
than 10,000 installations.

 An open source production
grade project started in
2002.

 An Apache module which
supports both embedded
and reverse proxy
deployments.

 Support and training by
Breach Security.

`

Web

Server

Firewall

`

Web

Server

Firewall

Proxy Mode

Embedded Mode

http://www.modsecurity.org/projects/modprofiler

Technical overview

 Rules language is not a simple custom signatures engine, but rather
an event-based scripting language targeted at inspecting HTTP
transactions.

 Supports variables, state, control structure and even full blown
scripting using LUA.

 Simple things are easy to do; complex things are possible, for
example:
 A signature for detecting a known attack vector.

 A state based rule for detecting a brute force attack (see example below)

1

2

SecAction phase:1,nolog,pass,initcol:ip=%{REMOTE_ADDR}_%{HTTP_USER-AGENT}

SecRule IP:SCORE "@ge 20" "phase:1,pass,log,setvar:ip.blocked=1,expirevar:ip.blocked=600"

SecRule IP:BLOCKED "@eq 1" "phase:1,deny,log,status:302,redirect:http://www.site.com/"

SecRule REQUEST_FILENAME "login\.jsp$"

"phase:1,pass,nolog,setvar:ip.score=+1,expirevar:ip.score=600"

Comparison

Operator
ActionState

Rate

control

http://www.modsecurity.org/projects/modprofiler

Components

 ModSecurity 2.5:

 The core rules processing engine.

 ModSecurity Core Rules:

 An open source rule set providing a generic negative

security application layer protection.

 ModSecurity Community Console:

 A free tool for aggregating events from up to 3

ModSecurity sensors.

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART III – POSITIVE SECURITY USING

LEARNING

http://www.modsecurity.org/projects/modprofiler

Alternative Learning Methods

 Outbound based dynamic policy
 The original application firewalls technology.

 WAF analyzes output pages to generate rules for input pages:
► Input fields, hidden fields, links etc.

 Defunct due to Web 2.0, AJAX & Web Services.

 Crawler based learning
 Same process as dynamic policy, but built in advance.

 Somewhat better than dynamic policy as crawler can interpret
JavaScript.

 Still a problem to adjust to changes and to achieve full coverage.

 Behavioral based learning:
 Analyze inbound traffic to determine normal behavior.

 The leading method today; Used by ModProfiler.

http://www.modsecurity.org/projects/modprofiler

Behavioral Based Learning

 Monitor inbound traffic and generate a normal
behavior profile.

 Profile includes a statistical model for normal values
of the properties of the request:

 Field length, character set, expected value or type.

 Existence, order, cardinality and location of fields.

 Properties not limited to fields: can include for example
also properties of headers or uploaded files.

 Validate request according to profile:

 Each model separately.

 Anomaly scoring: aggregating multiple tests.

http://www.modsecurity.org/projects/modprofiler

Sample Profile

Site Map

Parameters

Parameter

Types

http://www.modsecurity.org/projects/modprofiler

Behavioral Analysis Challenges

 Learning period:

 Fixed length or determined by quality of sample?

 Different for each element or global?

 Protecting seldom used pages.

 Avoiding learning attacks.

 Complex applications:

 Identifying parameter: Custom separator, PATH_INFO, SOAP,
JSON or non standard.

 Dynamic URLs: Parameters as part of the URL.

 A parameter specifying the action instead of the URL.

 Anomalies vs. attacks
 O'Brien is Irish, O‟Select is not.

 Change management.

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART IV - MODPROFILER

http://www.modsecurity.org/projects/modprofiler

Collecting Data

 Uses ModSecurity audit logs, which contain

complete HTTP transaction data, as source of

traffic.

 Filter out invalid traffic.

 Ignore requests singled out by signatures.

 Remove "noise" (e.g. non-200 transactions).

 Extract properties:

 User defined mapping (Dynamic URLs, custom

separators)

http://www.modsecurity.org/projects/modprofiler

Generation the Model

 Simple fixed size sample of requests used for

elements and all models.

 Generates tests for each model (length, char set,

type) for each parameters

 This matches well ModSecurity rules capabilities.

 Exported as ModSecurity rules:

 Blocking strategy set by user: Warn only, Block or Mixed

mode: block for well-learned resources, warn for all others.

 Recommended to use detection only mode initially to test

rules and apply exceptions.

http://www.modsecurity.org/projects/modprofiler

Real Wold Issues

 Handling of partial learning:
 Rules generated for URLs for which sample was too low

can be set to alert even if other rules block.

 Rules generated to alert/block on URLs and parameters
not seen during learning.

 No handling of application changes: a change may
result in a flood of events.

 Negative security should still be used:
 Filter attacks for learning.

 Provide protection during learning period and for partially
and not learned resources.

 Protection for free form text fields.

http://www.modsecurity.org/projects/modprofiler

ModProfiler: Defending web applications from 0-day attacks

Ivan Ristić and Ofer Shezaf, Breach Security, BlackHat August 2008

PART V - CONCLUSION

http://www.modsecurity.org/projects/modprofiler

False Positives and False Negatives

 False positives (FPs):
 How many times the rule set alerted when there was no

attack?

 As attack count is low, false positives are measured by
counting total alerts.

 False negatives (FNs):
 How many attacks did the rule set miss?

 Nearly impossible to measure for a 0-day detection
system. The best way to estimate is to measure level of
protection against known exploits by running a scanner.

 FPs and FNs are a function of sample size,
protected application and sample quality.

http://www.modsecurity.org/projects/modprofiler

Future directions

 User profiling:

 Learn the behavior of each user.

 Can be used to detect fraud.

 Requires handling a huge amount of information and compensating
for a small sample per user.

 Session profiling:

 Learn the normal flow of usage in the application.

 Handle additional data formats:

 XML, JSON, URL Mapping.

 Real-time & continues operation:

 Detect change by monitoring event flood or comparing profiles over
time.

 Learning responses:

 Detecting defacement, leakage and errors.

http://www.modsecurity.org/projects/modprofiler

Questions?

Ivan Ristic, ivanr@breach.com

Ofer Shezaf, ofers@breach.com

Further information:
http://www.modsecurity.org/projects/modprofiler

mailto:ivanr@breach.com
mailto:ofers@breach.com

