
Jinx – Malware 2.0
We know it’s big, we measured it!

Itzik Kotler
Yoni Rom

This is how your browser looks like
before Jinx has loaded …

This is how your browser looks like
after Jinx has loaded …

Did you see the difference?

• The pixel on the 31337th row has changed
from white to black… just kidding ;-)

• Javascript by nature is GUI-less thus it will
not alter the browser interface (unless you
explicitly ask it to).

10 seconds on Javascript

• High level scripting language commonly
used for client-side web development.

• “Natively” supported by Browsers, no need
for additional components (e.g. ActiveX’s).

• Javascripts do not need any special
security privileges prior to execution.

• Capable of using some of the hottest Web
2.0 features such as AJAX.

Exit Assembly, Enter Javascript

• Cross platform
– Malware is oblivious to the underlaying OS.

• Architecture independent
– Malware is oblivious of the CPU.

• Unified
– Malware uses constant standard API.

• Comprehensive
– Malware doesn’t need any external modules.

Sharpen Your Pencil and Take
out a Clean Sheet of Paper.

No, this isn't a quiz, It's your first
Javascript malware programming

class!

Entry Point (Mozilla Design Flaw)

• hiddenWindow.html
– The hidden window is similar to a regular

window, but unlike any other window, it is
available the whole time the application is
running, but isn't visible to the user.

• Paths
– %ProgramFiles%\Mozilla

Firefox\res\hiddenWindow.html
– /opt/firefox/res/hiddenWindow.html
– /usr/share/iceweasel/res/hiddenWindow.html

Typical hiddenWindow.html

• Includes something like this:
– <html><head><title></title></head><body></

body></html>
• Document base URI is set to:

– resource://gre/res/hiddenWindow.html
• Loaded only once (not per instance).
• Globally used (not per profile).

Welcome to ChromeWindow

• The Window object and initial scope of
hiddenWindow.html

• A very restricted object, both in methods
(read only properties) and in access to
files.

• Not a very interesting place to be stuck in
for a long time …

Escaping from resource://

• What changes a document restriction is
the URL from which it was invoked.

• hiddenWindow.html can be invoked
through different base URI … file:///

• So if hiddenWindow.html is invoked
through file:/// URL it is basically free of
resource:// and is no longer considered to
be a resident of Chrome.

Jailbreak Javascript Style
…
<script>

if (location.search) {
alert(“Hello World!\n”);

} else {
location.href =

“file://<path>/hiddenWindow.html?homefree”;
}

</script>
…

Javascript and Files

• After the jail break, we’re running from
file:/// and as such we are capable of
accessing files and reading their data.

• Files on the target computer and mapped
share’s are accessible through file:/// URI

• Let’s start reading some files then …

Hello C:\BOOT.INI & IFRAME

• IFRAME allows us to open BOOT.INI
through: file:///C:/boot.ini

• Since our document also originates from
file:/// we are completely bypassing the
same origin policy enforcement.

• Works almost perfectly and is completely
scalable.

Reading Files through IFRAME

…
<iframe id=“foobar” src=“file:///C:/boot.ini

“></iframe>
<script>
alert(document.getElementById(‘foobar’).co

ntentDocument.body.innerHTML);
</script>
…

Problems with IFRAME

• Accessing the IFRAME content needs to
be synchronous, as rendering takes time.

• When trying to access a FILE which has a
registered URI (e.g. Word Document)
instead of returning the .innerHTML, an
application will be launched (e.g. Word).

• IFRAME is so 90’s ;-)

Exit IFRAME, Enter AJAX

• AJAX is not emotionally or mentally
attached with URI’s, thus it won’t launch
any associated applications.

• AJAX can be synchronous thus
eliminating the waiting period.

• AJAX is a Web 2.0 pioneer.

DIR-a-like through AJAX

…
<script>
var http = new XMLHttpRequest();
http.open("GET", "." ,false);
http.send(null);
</script>
…

Implementing pwd() through AJAX

…
<script>
.. // Initialization of AJAX socket (as before)
http.responseText.substring(http.responseT

ext.indexOf(' '),
http.responseText.indexOf('\n'));

</script>
…

= getHiddenWindowPath

• AJAX allow us to automatically locate
hiddenWindow.html and thus we no
longer require any “static” paths.

• Did we already mention that we’re cross
platform? ;-)

AJAX’s addiction to text

• AJAX always assumes the data is TEXT,
this is due to the default charset which
doesn’t support binary/high ASCII values.

• Lucky this issue can be easily bypassed
through overriding the default charset with
something that supports high ASCII
values.

Overriding AJAX’s default charset

…
<script>
// assume AJAX socket is declared as ‘file’
file.overrideMimeType('text/plain; charset=x-

user-defined');
file.send(null);
</script>
…

Let’s put the O in OUTPUT

• Data is coming in through IFRAME and/or
AJAX but how does it go out?

• We can’t submit it through FORM as it
would require us to leave the file:///
document in favor of the http:// document
and a http:// document can’t go back to
file:/// ...

• AJAX won’t allow us to do POST since
we’re violating the same origin domain
policy …

http://developer.mozilla.org/en/docs/Working_with_windows_in_chrome_code
http://developer.mozilla.org/en/docs/Working_with_windows_in_chrome_code

We’re simply going to GET it!

• GET supports up to 2k of data passed
through URL (depend on the server).

• IFRAME partially ignores the same origin
domain policy as it will perform the request
but won’t let us peek in to the result.

• Simple PHP on the server side will quickly
reassemble the data back into a single file.

When one (byte) becomes four

• GET doesn’t support binary characters, so
how are we going to push it out?

• Encoding methods (ratio byte to byte):
– BASE64 1:0.5..3 (e.g., YQ==)
– ESCAPE 1:1||1:3 (e.g., A, %20)
– HEX 1:2 (e.g. 41)

Keep it quiet (CPU Usage)

• Javascript was never really designed to
work with so much buffers and allocated
memory and it shows.

• A solution to this problem is to redesign
the malware to be preemptive and instead
of being linearly executed (blocking), it
should be event driven, by pre-scheduled
events (non-blocking).

setInterval() & document.hash

• Javascript supports an alarm()-like
function that’s called setInterval().

• Anchors (aka. hashes) can be set and
changed without reloading the document,
this could be a good place to store the
states the malware is going through (State
Machine 101)…

= Scheduler

...
<script>
If (self.jinx_id) { clearInterval(self.jinx_id); }
try { jinx_dispatch(); } catch (e) { … }
self.jinx_id = setInterval(‘jinx_schd()’, 1500);
</script>
…

= Dispatch

…
<script>
If (!location.hash) { location.hash = ‘#idle’; }
If (location.hash == ‘#idle’) { … }
If (location.hash == ‘#start_task’) { … }
</script>
…

Build me a framework …

• Every X seconds we’re invoking the
scheduler function, which in turn calls the
dispatch function.

• The calling of the dispatch function is
wrapped by a try and catch clause to
prevent errors from breaking the run cycle.

• Tasks can be queued and the queue can
be changed on the fly.

From Malware to Bot

• Jinx will accept commands from a master
(e.g. files to retrieve, result of queries) and
obey.

• If we would like to load a document
(through an IFRAME) we still couldn’t
access it’s content due to the same
domain policy …

<script> ?

• Funny as it may sound, there is no
problem at all to use the src attribute in
order to fetch a remote Javascript.

• I know, I know … but believe me, it works
and we can directly load functions and
variables from a remote site without
violating any policies or triggering any
alarms.

• But … this is BlackHat right?

0DAY (Design Flaw)

• CSS links are also protected by same
origin policy, thus we can’t access
elements in CSS directly (An exception will
be raised).

• Legacy properties in DOM elements
bypass this thus opening up 15 bytes that
can be loaded from a remote CSS.

CSS-bypassing-same-origin-policy

…
<script>
document.fgColor; // 3 bytes
document.bgColor // 3 bytes
document.alinkColor; // 3 bytes
document.linkColor; // 3 bytes
document.vlinkColor; // 3 bytes
</script>
…

What can be done with 15 bytes?

• 15 bytes are equal to 120 bits
• We can reserve 5 bits for an opcode, that

leaves us with ~14 bytes for payload and
32 possible opcodes

• Since those bytes are represented by
RGB there is no wrong or right (even
NULL bytes are allowed to party!)

So?

• We have demonstrated that it is possible
to create a fully functional bot using only
Javascript.

• Please see the proof of concept and the
supplied source code of our dearly
beloved Jinx, a fully working Javascript
malware.

The Future

• Using Google AJAX API to make malware
that can search for it’s master website
(eliminate the single point of failure)

• Exploiting different URI handlers to launch
applications.

• Con people in to solving CAPTCHA
through fake popup windows.

Links/References

• Working with windows in chrome code
– http://developer.mozilla.org/en/docs/Working_

with_windows_in_chrome_code

http://developer.mozilla.org/en/docs/Working_with_windows_in_chrome_code
http://developer.mozilla.org/en/docs/Working_with_windows_in_chrome_code

Q&A

…
<script>

alert(“Hello World!\n”);
</script>

…

Thank you!

	Jinx – Malware 2.0�We know it’s big, we measured it!
	This is how your browser looks like before Jinx has loaded …
	This is how your browser looks like after Jinx has loaded …
	Did you see the difference?
	10 seconds on Javascript
	Exit Assembly, Enter Javascript
	Sharpen Your Pencil and Take out a Clean Sheet of Paper.��No, this isn't a quiz, It's your first Javascript malware programmin
	Entry Point (Mozilla Design Flaw)
	Typical hiddenWindow.html
	Welcome to ChromeWindow
	Escaping from resource://
	Jailbreak Javascript Style
	Javascript and Files
	Hello C:\BOOT.INI & IFRAME
	Reading Files through IFRAME
	Problems with IFRAME
	Exit IFRAME, Enter AJAX
	DIR-a-like through AJAX
	Implementing pwd() through AJAX
	= getHiddenWindowPath
	AJAX’s addiction to text
	Overriding AJAX’s default charset
	Let’s put the O in OUTPUT
	We’re simply going to GET it!
	When one (byte) becomes four
	Keep it quiet (CPU Usage)
	setInterval() & document.hash
	= Scheduler
	= Dispatch
	Build me a framework …
	From Malware to Bot
	<script> ?
	0DAY (Design Flaw)
	CSS-bypassing-same-origin-policy
	What can be done with 15 bytes?
	So?
	The Future
	Links/References
	Q&A
	Thank you!

