Jinx — Malware 2.0
We know it’s big, we measured it!

ltzik Kotler
Yoni Rom

This is how your browser looks like
before Jinx has loaded ...

¥) Google - Mozilla Firefox ===l
File Edit View History Bookmarks Tools Help

Cﬁ - - @ m‘ http: f v, google . com)! | ' Google bt
Web [mages Maps MNews Shopping Gmail more v iGoogle | Sign in

Google

I Advanced Search
Freferences
Google Search I'm Feeling Lucksy Language Tools

Advertising Programs - Buginess Solutions - About Google - Go to Google Israel

@008 Google

e
o

Done

This is how your browser looks like

after Jinx has loaded ...

¥J Google - Mozilla Firefox =
File Edit View History Bookmarks Tools Help
@ - - & fa} btk fvvvs. google . com | B | [[C]-]cocqle Ly

Web Images Maps MNews Shopping Grmail more *

Google

I Advanced Search
Freferences
Google Search I'm Feeling Lucksy Language Tools

Advertising Programs - Buginess Solutions - About Google - Go to Google Israel

@008 Google

iGoogle | Sign in

Done

)

Did you see the difference?

e The pixel on the 31337th row has changed
from white to black... just kidding ;-)

e Javascript by nature i1s GUI-less thus it will
not alter the browser interface (unless you
explicitly ask It to).

10 seconds on Javascript

High level scripting language commonly
used for client-side web development.

“Natively” supported by Browsers, no need
for additional components (e.g. ActiveX’s).

Javascripts do not need any special
security privileges prior to execution.

Capable of using some of the hottest Web
2.0 features such as AJAX.

Exit Assembly, Enter Javascript

e Cross platform
— Malware is oblivious to the underlaying OS.

o Architecture independent

— Malware is oblivious of the CPU.
 Unified

— Malware uses constant standard API.

« Comprehensive
— Malware doesn’t need any external modules.

Sharpen Your Pencil and Take
out a Clean Sheet of Paper.

No, this isn't a quiz, It's your first
Javascript malware programming
class!

Entry Point (Mozilla Design Flaw)

e hiddenWindow.html

— The hidden window is similar to a regular
window, but unlike any other window, It is
available the whole time the application is
running, but isn't visible to the user.

e Paths

— %ProgramFiles%\Mozilla
Firefox\res\hiddenWindow.html

— [opt/firefox/res/hiddenWindow.html
— /usr/share/iceweasel/res/hiddenWindow.html

Typical hiddenWindow.html

Includes something like this:

— <html><head><title></title></head><body></
body></html|>

Document base URI Is set to:
— resource://gre/res/hiddenWindow.html

Loaded only once (not per instance).
Globally used (not per profile).

Welcome to ChromeWindow

 The Window object and initial scope of
hiddenWindow.htm|

« A very restricted object, both in methods
(read only properties) and in access to
files.

 Not a very interesting place to be stuck in
for a long time ...

Escaping from resource://

 What changes a document restriction Is
the URL from which it was invoked.

e hiddenWindow.html can be invoked
through different base URI ... file:///

e So If hiddenWindow.html is invoked
through file:/// URL it is basically free of
resource:// and is no longer considered to
be a resident of Chrome.

Jailbreak Javascript Style

<script>
If (location.search) {
alert(*Hello World\n™);
} else {

location.href =
“file://<path>/hiddenWindow.html?homefree”;

}

</script>

Javascript and Files

« After the jail break, we’re running from
file:/l/ and as such we are capable of
accessing files and reading their data.

* Files on the target computer and mapped
share’s are accessible through file:/// URI

e Let’s start reading some files then ...

Hello C:\BOOT.INI & IFRAME

 IFRAME allows us to open BOOT.INI
through: file:///C:/boot.ini

e Since our document also originates from
file:/ll we are completely bypassing the
same origin policy enforcement.

* Works almost perfectly and is completely
scalable.

Reading Files through IFRAME

<|frame 1d="foobar” src="file:///C:/boot.ini
“></Iframe>

<script>

alert(document.getElementByld(‘foobar’).co
ntentDocument.body.innerHTML);

</script>

Problems with IFRAME

* Accessing the IFRAME content needs to
be synchronous, as rendering takes time.

 When trying to access a FILE which has a
registered URI (e.g. Word Document)

iInstead of returning the .innerHTML, an
application will be launched (e.g. Word).

» IFRAME is s0 90’s :-)

Exit IFRAME, Enter AJAX

« AJAX Is not emotionally or mentally
attached with URI’s, thus it won’t launch
any associated applications.

« AJAX can be synchronous thus
eliminating the waiting period.

« AJAX is a Web 2.0 pioneer.

DIR-a-like through AJAX

<script>

var http = new XMLHttpRequest();
http.open("GET", "." ,false);
http.send(null);

</script>

Implementing pwd() through AJAX

<script>
.. I/ Initialization of AJAX socket (as before)

http.responseText.substring(http.responseT
ext.indexOf(' "),
http.responseText.indexOf('\n'"));

</script>

= getHiddenWindowPath

« AJAX allow us to automatically locate
hiddenWindow.htm| and thus we no

longer require any “static” paths.

e Did we already mention that we're cross
platform? ;-)

AJAX’'s addiction to text

« AJAX always assumes the data is TEXT,
this is due to the default charset which
doesn’t support binary/high ASCII values.

* Lucky this issue can be easily bypassed
through overriding the default charset with
something that supports high ASCI|
values.

Overriding AJAX’s default charset

<script>
/[l assume AJAX socket Is declared as ‘file’

file.overrideMimeType('text/plain; charset=x-
user-defined’);

file.send(null);
</script>

Let's put the O In OUTPUT

e Data is coming in through IFRAME and/or
AJAX but how does it go out?

 We can’t submit it through FORM as it
would require us to leave the file:///
document in favor of the http:// document

and a http:// document can’t go back to
file /] ...

« AJAX won't allow us to do POST since
we’re violating the same origin domain

policy ...

http://developer.mozilla.org/en/docs/Working_with_windows_in_chrome_code
http://developer.mozilla.org/en/docs/Working_with_windows_in_chrome_code

We’'re simply going to GET It!

 GET supports up to 2k of data passed

 I[FRAME

through URL (depend on the server).

partially ignores the same origin

domain policy as it will perform the request

but won't let us peek in to the result.

« Simple PHP on the server side will quickly
reassemble the data back into a single file.

When one (byte) becomes four

 GET doesn’t support binary characters, so
how are we going to push it out?

 Encoding methods (ratio byte to byte):
— BASE64 1:0.5..3 (e.g., YQ==
— ESCAPE 1:1]|1:3 (e.g., A, %20)
—HEX 1:2 (e.g. 41)

Keep it quiet (CPU Usage)

o Javascript was never really designed to
work with so much buffers and allocated
memory and it shows.

« A solution to this problem is to redesign
the malware to be preemptive and instead
of being linearly executed (blocking), it
should be event driven, by pre-scheduled
events (non-blocking).

setinterval() & document.hash

e Javascript supports an alarm()-like
function that’s called setinterval().

 Anchors (aka. hashes) can be set and
changed without reloading the document,
this could be a good place to store the
states the malware Is going through (State
Machine 101)...

= Scheduler

<script>

If (self.jinx_Id) { clearinterval(self.jinx_id); }
try { Jinx_dispatch(); } catch (e) { ... }
self.jinx_id = setinterval(‘jinx_schd()’, 1500);
</script>

= Dispatch

<script>
If (location.hash) { location.hash = ‘#idle’; }
If (location.hash == *#idle’) { ... }

If (location.hash == *#start_task’) { ... }
</script>

Build me a framework ...

 Every X seconds we’re invoking the
scheduler function, which in turn calls the
dispatch function.

* The calling of the dispatch function is
wrapped by a try and catch clause to
prevent errors from breaking the run cycle.

 Tasks can be queued and the queue can
be changed on the fly.

From Malware to Bot

 Jinx will accept commands from a master
(e.qg. files to retrieve, result of queries) and
obey.

* |f we would like to load a document
(through an IFRAME) we still couldn’t
access It's content due to the same
domain policy ...

<ScCript> ?

 Funny as it may sound, there is no
problem at all to use the src attribute In
order to fetch a remote Javascript.

* | know, | know ... but believe me, it works
and we can directly load functions and
variables from a remote site without
violating any policies or triggering any
alarms.

e But ... this is BlackHat right?

ODAY™ (Design Flaw)

 CSS links are also protected by same
origin policy, thus we can’t access
elements in CSS directly (An exception will
be raised).

e Legacy properties in DOM elements
bypass this thus opening up 15 bytes that
can be loaded from a remote CSS.

CSS-bypassing-same-origin-policy

<script>

O
C
C
O
O

ocument.fgColor; // 3 bytes
ocument.bgColor // 3 bytes
ocument.alinkColor; // 3 bytes
ocument.linkColor; // 3 bytes
ocument.vlinkColor; // 3 bytes

</script>

What can be done with 15 bytes?

« 15 bytes are equal to 120 bits

 \We can reserve 5 bits for an opcode, that

leaves us with ~14 bytes for payload and
32 possible opcodes

e Since those bytes are represented by
RGB there Is no wrong or right (even
NULL bytes are allowed to party!)

So0?

 We have demonstrated that it is possible

to create a fully functional bot using only
Javascript.

* Please see the proof of concept and the
supplied source code of our dearly

beloved Jinx, a fully working Javascript
malware.

The Future

e Using Google AJAX API to make malware
that can search for it's master website
(eliminate the single point of failure)

* Exploiting different URI handlers to launch
applications.

e Con people in to solving CAPTCHA
through fake popup windows.

Links/References

« \Working with windows in chrome code
— http://developer.mozilla.org/en/docs/Working

with windows In chrome code

http://developer.mozilla.org/en/docs/Working_with_windows_in_chrome_code
http://developer.mozilla.org/en/docs/Working_with_windows_in_chrome_code

Q&A

<script>
alert(*Hello World\n”);
</script>

Thank you!

	Jinx – Malware 2.0�We know it’s big, we measured it!
	This is how your browser looks like before Jinx has loaded …
	This is how your browser looks like after Jinx has loaded …
	Did you see the difference?
	10 seconds on Javascript
	Exit Assembly, Enter Javascript
	Sharpen Your Pencil and Take out a Clean Sheet of Paper.��No, this isn't a quiz, It's your first Javascript malware programmin
	Entry Point (Mozilla Design Flaw)
	Typical hiddenWindow.html
	Welcome to ChromeWindow
	Escaping from resource://
	Jailbreak Javascript Style
	Javascript and Files
	Hello C:\BOOT.INI & IFRAME
	Reading Files through IFRAME
	Problems with IFRAME
	Exit IFRAME, Enter AJAX
	DIR-a-like through AJAX
	Implementing pwd() through AJAX
	= getHiddenWindowPath
	AJAX’s addiction to text
	Overriding AJAX’s default charset
	Let’s put the O in OUTPUT
	We’re simply going to GET it!
	When one (byte) becomes four
	Keep it quiet (CPU Usage)
	setInterval() & document.hash
	= Scheduler
	= Dispatch
	Build me a framework …
	From Malware to Bot
	<script> ?
	0DAY (Design Flaw)
	CSS-bypassing-same-origin-policy
	What can be done with 15 bytes?
	So?
	The Future
	Links/References
	Q&A
	Thank you!

