Jared DeMott

For CTF 2008 Training

Reverse Engineering Methodology
I’ve always wanted a more scientific process to follow on each reverse engineering task. The following are a list of objectives to perform during a new investigation. The ordering is not set in stone, merely a useful process. I start by describing each objective. Each objective is followed by a list of suggested steps to achieve that objective. At the end of the article I perform a case study against a very sneaky little application created by Doc (Kees) and Wrffr (Jesse) of the l@stplace hacking team. Enjoy!
-JROD
Objective 1: Basic Application Construction

The goal of objective 1 is to determine how the application was constructed. This information will help the reverse engineer make sense of what is seen in the disassembly. For example, if it’s determined that the executable has been stripped, which means that all debug/programming information (such as variable and functions names) has been removed, than we expect to see less useful names. However, if the executable is dynamically linked, we should still expect to see shared library names (like printf) show up. If it is statically linked (all required functions are physically brought into the file at compilation time) than shared library names are not expected to be present.
The following steps are recommended to achieve this objective:
1. Look at file properties
a. In *nix run the ‘file’ command

b. For Windows, look at the file extension and view properties

2. Get more information about how the file was built and what it contains

a. *nix

i. ‘objdump’ [-x displays all headers. -R give dynamic relocation info]
b. Windows

i. ‘Dumpbin’ [/all gives all the information]
ii. PEView

iii. PEid

iv. Google the hash, etc

3. More on how it was built

a. Is it dynamic or statically linked?

b. How will it get loaded?

c. Etc

Objective 2: A Quick Guess

The second object deals with assembling some “obvious” facts. For example, if you look at the ASCII (human readable) strings present in an executable they might point toward the operation of the application. Imagine that the string, “Joe’s FTP Server v2.3”, is present. Could this be an FTP server? Furthermore, there must be a reason why we choose this application to reverse engineer? Do we already know what it is? For example, perhaps you want to find an 0-day in Microsoft’s Internet Explorer, you would already know it’s a web browser so no guess work is needed there. But for a malware sample “dropped” on your lap by your boss if you’re a malware expert, you might have no clue what it does
.

The following are some steps to take here:
4. View the strings

a. *nix

i. ‘strings’
b. Windows

i. Strings or something like that for Windows

c. IDApro will work to view strings for both PE files (Windows) and ELF files (*nix)
5. More on strings

a. Clues

i. For example, if you’re looking to make the binary get to a point where it says “You WIN!”, then start by looking for that string and working backwards.
Objective 3: A First Peek
Sometimes before you dive into static disassembly it can be fruitful to dynamically execute a binary to see if it’s execution is simple (assuming you know it is safe to execute). So, simply run the application and see what happens. Next run it with inspection in a debugger or by tracing system calls
.

6. Trace system calls with debugger or *trace

a. *nix

i. strace, ptrace, truss, etc

b. Windows

i. ?

7. Follow in debugger

a. *nix

i. gdb

b. Windows

i. Ollydbg/Immdbg, Visual Studio debugger, etc

Objective 4: Input Tracing

Rather you’re trying to crack a key generator to by-pass paying for software, or wondering if you could launch a remote attack against Joe’s FTP Server
 following the input is the key. What is done to the number you supply in the keying software to be sure it’s a valid number? How does the FTP server parse that username and password? Those are the types of questions we’re often trying to answer. Input tracing can be done dynamically, statically, or a combination of the two
. Ideally there would be some tool that totally automates this work
 , but sadly no one tool has been found flawless for this task. Typically some combination of tools is employed. The following are some ideas to get started:
8. Dynamic Tracing
a. Dynamic tracing via a debugger is helpful because one can inspect the contents of actual registers and memory locations. This can be particularly helpful when a piece of global memory is being used to build a string for example. Instead of following the static code we could simply set a breakpoint in that routine and inspect the string.

b. One thing to look out for here is that more and more malicious programs are employing anti-debugging tricks to make this sort of inspection difficult.
9. Statically following Inputs
a. Basically it involves following arguments from one function to the next, and the associated return values
b. See the next section
Objective 5: Reverse Engineering

IDA pro
 is the de facto reverse engineering tool, particularly for static analysis. Here is a brief list of steps I recommend when reversing:

1. Load the file into IDA pro
· Check to be sure there weren’t too many errors

· Errors are indicated by ‘red’ in the problems view

2. Examine function arguments and return values
· It is very important to understand the high level interface for each function if possible. This can sometimes eliminate the need to RE the function if its purpose is obvious from a high level. A strlen() type function or print() function are good examples of code you don’t want to waste time reversing, and typically their purpose is obvious. For example, with the print() you’ll see it called after each time a string is pushed to the stack.
3. Rename anything and everything so that it’s obvious you’ve looked at it before.
· After a while, you’ll start running in circles if you don’t.

4. I often bounce back and forth between static disassembly and a debugger execution trace, and comment what the value of certain registers/variables were in IDA
· This is particularly helpful if you’ve got ugly math or something that’s difficult to understand from a static view
5. You may also want to keep a journal or text doc as you work to document your discoveries.
Case Study: The Mysterious Binary Sent out by Doc/Wrffr

Background
The l@stplace team wanted to think about reverse engineering more, since this is a big part of CTF each year. In conjunction with this we were asked to help design a few tough RE problems. Doc and Wrffr’s first go at this was an executable called challenge. From an email exchange I already know the following:

(Doc) -> Wrffr and I got together this week to hammer out some crazy ideas for the quals challenge. One thing we ended up with was a way to basically implement the runtime library resolver ourselves. In this way, the libc functions we're using aren't immediately obvious. e.g.:

 $./challenge

 Your hostname is 'gorgon'

 $ objdump -R challenge

 challenge: file format elf32-i386

 DYNAMIC RELOCATION RECORDS

 OFFSET TYPE VALUE

 08049e40 R_386_GLOB_DAT __gmon_start__

 08049e50 R_386_JUMP_SLOT __gmon_start__

 08049e54 R_386_JUMP_SLOT __libc_start_main

 08049e58 R_386_JUMP_SLOT printf

 e.g.:

 int (*gethostname_ptr)(char *name, size_t len);

 gethostname_ptr = find_func_by_name("libc", "gethostname");

 gethostname_ptr(hostname_buff, 100);

 printf("Your hostname is '%s'\n", hostname_buff);

 The idea was to then xor the strings that are getting resolved ("libc" and "gethostname" above) from a string on the command line, which would force people to crack a multi-byte xor before they could even _run_ the binary.
Understanding Linking and Loading

The first thing we have to answer is what is a runtime library resolver and why might we want to implement it manually? Shared (dynamic) library code (printf and gethostname here) that is linked in when the executable is loaded into memory is an example of runtime resolution. The function pointers in the global offset table (GOT)
 must be properly patched such that they point to the location of the shared code. This dynamic linking feature allows code to be much smaller than if all of the necessary code always had to be statically linked into the executable … how many files call printf? What a waste of space if they all had a local copy of that code compiled into each executable.
Why modify the runtime resolver?

As in the above example Doc/Wrffr were explaining that they wanted to “hide” the presence of key functions like gethostname(). When Doc ran the program you could see that it’s output was, Your hostname is 'gorgon’ , but you couldn’t see how that information was being collected because according to the ‘objdump’ results the only function
 external to this program was printf. So the mystery in this case would simply be, “How did it know my hostname?”, since it apparently doesn’t use the gethostname() function.
Let the games begin

After that email exchange Doc mailed out an executable with the same name, challenge. Though embedded with the same obfuscation technology, this challenge had been upgraded in ways not known to me. When I execute the file I get:
$./challenge jared
 Is not so good akshully
 $ objdump -R challenge

 challenge: file format elf32-i386

 DYNAMIC RELOCATION RECORDS

 OFFSET TYPE VALUE

 080490e4 R_386_GLOB_DAT __gmon_start__

 080490f4 R_386_JUMP_SLOT __gmon_start__

 080490f8 R_386_JUMP_SLOT __libc_start_main

 080490fc R_386_JUMP_SLOT printf

08049100 R_386_JUMP_SLOT puts
It looks pretty similar to the previous challenge output, but the offset addresses are different and I can see that puts function is also showing up. So what? What’s suspicious about this? Well for one I know it’s got badness in it because it’s from brother Doc and brother Wrffr. (Beyond that if you do an objdump -R on most ordinary executables they’re likely going to show more functions than just those two. Now in this case I have a big clue, so I already know why they’re not there and what I must do to get them back. Remember this little nugget:
“The idea was to then xor the strings that are getting resolved ("libc" and "gethostname" above) from a string on the command line, which would force people to crack a multi-byte xor before they could even _run_ the binary.” --Satan

Methodolgy
I think it’s best to try my methodology here to see if it seems helpful:
1. file reported: Linux binary 2.6.8, 32bit, x86, dynamically linked, stripped

2. objdump –x reported: Information about the composition of the binary.

a. Start address (0x08048320)
b. Headers

c. Dynamic Section

d. Libc version

e. Sections (24)

3. I already know about how it was built …. I don’t have initial access to any of the APIs used.
4. Strings reported -- really only two interesting strings: “is not so good akshuly” and “Congratulations %s!”.
5. The first sting I’d hoped to see since that is the default error message before program exit. The other string is interesting however. This could be a red herring
, but likely this is the message printed when the correct XOR string has been supplied via the command line.
6. Strace printed out a bunch of mmap, open, close, etc with a write. Nothing that looks too interesting here.

7. When I opened challenge in gdb (gdb ./challenge), I wasn’t able to set a breakpoint on main (b main) before executing (run)
. “start” didn’t seem to help either. As a work around:

a. $ readelf -a challenge | grep Entry

 Entry point address: 0x8048320 (yes, I already had this)
b. $ gdb challenge
c. [image: image1.jpg]dword ptr [ecx], 1 ; argc check, must be greater than 1|

short loc_S8O48CF5

Inou eax, [eax+h]

calr xoRING

Inoy [esp+90n+uar_00], eax|

P —
EAN L

[Loc_8ouscFs:

Imou’ [esp+90hsvar_8C], offset unk_8049180
Inou [esp+90h+var_90], offset dword_8eu914ol
call looping

test eax, eax

iz short_yousuck

EAN L EAN L
ebx, [ebp-6Ch]
Imou [esp+90hsvar_d0], ebx lyousuck: ; “is not so good akshuly"
Inou [esp+96hsvar_8C], 64h Imou [esp+98hsvar_90], offset alsNotSoGoodAks
call eax call _puts
Inou [esp+8Chsvar_88], ebx sub Esp, GFFFFFF86h
Inou [esp+8Chsvar_8C], offset aCongratulation ; “Congratulations Zst\n“| v eax,
call _printf pop ecx

(gdb) br *0x8048320
Breakpoint 1 at 0x8048320
d. (gdb) run

Starting program: challenge

...

Breakpoint 1, 0x0000000008048320 in ?? ()

 Setting a break point on 08048CD4 would also be a good idea as that is main() instead of start. So, when reversing one could either approach the problem statically (just .asm, no debugger) or dynamically (just debugger, no .asm). I prefer a mix of the two when possible
. Reverse engineer is complex enough that not every little step can be recorded in a reasonable amount of time, but I’ll try to hit all the major points.
[image: image10.jpg]

Layer 1: Finding main()
I opened challenge up in IDA (version 5.2). It began at the “start” where I saw three address pushes followed by a call to __libc_start_main(). I believe the third push (first argument to the function) is the address of main, so I labeled that address main and leap to that address. See Figure 1.
Upon inspection (See Figure 2) this sure looks like main: I see a typical *nix command line argc
 check at the very top. There are two branches, either we supplied enough args
 (2 or more) or we didn’t. If we didn’t supply enough args we proceed to the test block (renamed it to looping for some reason). If do have the proper args we go to the routine I renamed XORING which is the code to decrypt the runtime lib addresses (my guess as of now).
[image: image11.jpg]start
lstart proc near

xor evp, evp
pop esi

mov ecx, esp

land esp, OFFFFFFFon
push eax

push esp

push edx

push offset sub_8048D60
push offset sub_8Q48D70

push ecx
push esi

push offset main

call __1ibc_start_main
Ih1t

start endp

[image: image12.jpg]88048CE2 mou. eax, [ecx+h]

080u8CES cnp duord ptr [ecx], 1 ; argc check, must be greater than
080u8CES jle short around

08 048CER
08048CED mou
osouscFo call

eax, [eax+h]
[esp+98hsptr1], eax ; eax
XOR_Decryption_via_argu1

ptr to argu[1]]

—

EAN L

08 048CF5
08048CF5 around:
08 048CF5 mou

08 048CFD mou

[esp+90hsptr2], offset more_import_strings
[esp+98hsptr1], offset import_strings ; 1)°|

08048004 call Resolve_and_RunCode
08048009 test eax, eax

08048008 jz short_yousuck

EAN Ll

88648D40

Figure 2: Looks like main() to me

Layer 2: Going Deeper

So, we’ll start by reversing the XORING function. I’m going to start by stepping through the program a bit with the GDB/IDApro combination.
1. The first thing I noticed was that the argument passed to XORING is argv[1], which is no surprise. I’m guessing that argv[1] (command line argument supplied after the name of the program) will be the “key”, which if correct will “unlock” the imports and allow the challenge program to run/finish successfully.

2. Next we enter into a loop shown in Figure 3. Seemingly this loops NULLs out every byte in argv1 until it reaches the NULL byte at the end of the string. In Figure 4 we’ve some decisions to make. In the normal (randomly chose text) case we’re left with (0xff000000 -> 0x80000000) from Figure 3. I wonder if we could align our input such that there will be two NULLs at the end? Since the test does yield 0, we move to 0x08048524. After the shift right 0x80000000 -> 0x8000. We end up doing strlen(argv1) by the end of Figure 4. Is there a point to all of this code, or is this just red herring code?
[image: image2.jpg]08048485
08048485
08048485
08048487
0804848
0804848
080484C0
080484C2
080484CH
086484CA

took:
noy
add
lea

not
and
and
jz

; eax has 1st 4 of argul
eax, [esi]
esi, 4 5 index to next 4
edx, [eax-1010167n] ; sub 1 from each byte
3 EEAEIET > 40464040

eax : W1414141 -> bebebebe

edx, eax 3 40uOHOND -> O

edx, 80808080h 8 -> 0

short took : continues this way until finds NULL|

Figure 3: First Loop to decipher
[image: image3.jpg]EE N LL
08048ACC test edx, 80800
o80u8HD2 j2 short_cane

; 86080800 —> 8006f

[EA N L

080us524

o8ouss2y cane: ; 80000000 -> 8000
osouss2y she edx, 10n

080u8527 add esi, 2 5 2 past null byte|
osouss2 jnp short more } unchanged
0804852 XORING endp

os0uss20

EA N Ll

080u8HDA

080u8HDA nor- 3 unchanged
osouguDy add a1, 41

080usuD6 sbbesi, 3 ; points to nulll

08 0484D9

080484D9 Sub’ esi, edi
08 0484DB_nou [ebp+var_10], 0

080484D9 Loc_80484DY: ; calculates strlen(argui)

Figure 4: What does it do now?

1. Moving on in Figure 5 I believe I have found the XOR loop that is actually decrypting the strings in memory. It XORs 64 bytes at a fixed location in memory with my argv1 string. But how can I reverse the 64 byte long key that was used to encrypt this block? That’s a pretty large key size to brute force. Also, we go around this XOR loop twice … 0x08049140 is the data location to keep an eye on here. Moving on for now.
[image: image4.jpg](08 O4BLE2
08 0uguE2
08 0uguE2
08 0ug4ES
08 0uguE7
08 0u84EY
08 0uguEC
osouguEC

loc_t

noy
xor
xor
shl
lea

SOuBLE2:

eax, [ebpruar_10]

ebx, ebx
edx, edx
6

; clear ebx
3 clear edx
3 still 8

ecx, duord_8849140[eax] ; this looks interesting

; a Fixed address into ecx

loc_80484F2 ; load first byte (41) of argl into eax

movzx

add
xor
xor
cnp

setle

add
sub
add
and
cnp
jnz

08048512

8864851A inz

eax, byte ptr [edxredi]
edx, 1

ot

esi, edx ;
al 5
ebx, 1 3
.4 50
ecx, 1 :
edx, ;
ebx, 64 5
short loc_80484F2

inc index
0x1711295d -> 1711291c

clear

see if ue're at end of string
does nothing

another counter

>

operate on next byte in secret key?
nothing
if ebx

64 bail outt
load first byte (41) of argl into gax|

add [ebprvar_10], 1
08048516 cnp [ebprvar_10], 2
short loc 8B484E2|

Figure 5: This seems like the actual decryption loop

2. Next, I’m investigating the function I originally called “looping” now (Figure 6). Perhaps a poor name choice, but at any rate I’m guessing this is the code that verifies if the decryption went well, and then fixes up the imports if it did.
The first thing I noticed is that looping takes two arguments (both are ptrs to .data, more string xor?):

1. 0x08049180
2. 0x08049140 (0x40 or 64 bytes apart)
This second thing I notice about this function is that it returns 0 to indicate error and non-zero for success. I know this because there is the ‘test eax, eax’ directly after the function is called, and in the case that eax is zero we proceed to the failure condition, else to the success condition. Thus, inside looping I can label the last jump that does this work (zeroing) as such. See Figure 7.
[image: image5.jpg]68 048CAS mou edx, [edi]
osouscaz cp [ebp+uar_10], edy]
short loc_8048CuS|

osouscan j

EAN L

03048CAC jnp Failure]

——

EAN L EA N Ll
08 048BE0 03048081
08048BEQ Failure: 03048081 1oc_8048CB1:
03048BE0 xor eax, eax| [08048CB1 mou” eax, [esi]
03048CB3 add eax, [edi+4]
03048C86_jnp __loc 80u8BE2
L 2
EAN L
08 048BE2
03048BE2 1oc_8048BE2:
03048BE2 oy ebx, [ebpevar_C]|
03048BE5 mov esi, [ebpevar_8]]
03048BE8 mov edi, [ebprvar i
03048BEB mov esp, ebp
03048BED pop ebp
03048BEE retn

Figure 7: Bottom of "looping"

3. Now that we’ve peaked at the args/return (always a good first step in my opinion), on to the actual innards. In Figure 8 we see the top of looping. There’s a function named “printing?” which is defiantly poorly named, but since when I took a first peek in it, and didn’t have a clue what it was doing, but since I saw a reference to a printf string -- I named it that. “printing?” works on our mysterious .data, but for now I think I’ll treat it as a black box and see if I can move on without fully understanding it.
4. So, that didn’t work. Since “printing?” failed (returned zero), immediately I bailout of “looping”. I guess I’ll have to figure out what that function is doing.

5. Into “printing?” (Figure 9) and it took only one arg (0x08049140) and returns either success or not. The compare results in the zero flag being set (bit 6 of $eflags), though I’m not sure what that’s about. That mov ebx; esi; edi business is the same, what’s that all about? After three more compares we end up at 0x08048ae4. The last 2 of those 3 compares are in the .plt section, which is the procedure linkage table. I’m no ELF expert, but I believe this is the section of interest; where dynamic load data should belong.
[image: image6.jpg]08048BCO
0sougBCO
0sougBCO
03 0u8BCO
03 0u8BCO
03 0ugBCO
03 0ugBCO
0sougBCO
08 0u8BCO
0sougBCO
0s0ugBCO
03 0ugBCO
0sougBCO
03 048BC1
0susBC3
08 0u8BC6
08 0u8BCo
osousBCC
08 0u8BCF
08 048BD2
08 048BD5
08 048BDA
08 048BDC
08 0usBDE

looping

var_1
var_1
var_1
var 1
var_C= d
var_8= d
var_i= d
0804914

Zosouo1s

push
nov
sub
nov
nov
nov
nov
nov
call
test
nov
jnz

proc near

duord ptr -1Ch
duord ptr -18h
duord ptr —14h
duord ptr -16n
word ptr -6Ch
word ptr -8
word ptr i

duord ptr 8
duord ptr 0ch

ebp
ebp, esp

esp, 28

eax, [ebp+_08049140]

[ebp+var_8], esi ; Bx594cco

[ebp+var C], ebx ; Bx6C6FFM

[ebpevar_u], edi ; 0

[esp+1Ch=var_1C], eax ; pushing 0x08049140 as arg to this Func|
printing?

eax, eax

esi, eax

short loc_8O48BFO

EAN L

08048BF 0

03048BF0 Loc_8O4SBFO:

08048BF 0 mou’ [esp+iChsvar_18], 6
08048BF8 mou eax, [eax+8]

Figure 8: Top of looping

[image: image7.jpg]08 048AAD

printing? proc near

0804800
03048AA0 var_18- duord ptr -18h
03048AA0 var_14= duord ptr ~1sh
03048AA0 var_10- duord ptr —16h
03048AA0 var_C- dword ptr -0Ch
03048AA0 var_8- dword ptr -8
03048AA0 var_4- duord ptr 4
03048AA0 arg_6- dword ptr 8
0804800
03048AA0 push ebp
03048AA1 Moy ebp, esp
03048AA3 sub esp, 18h
03048AR6 cnp byte ptr ds:_printf, OFFh|
03048AAD nov [ebp+var_C], ebx
0304880 nov [ebpruar 8], esi
0304883 nov [ebprvar_s], edi
0304886 _j2 short ok
¥
EAN
08048ACY
03048ACO ok:
03048ACO cmp byte ptr ds:_printfed, 25h)
03048AD0 jnz __ short failure
EAN L
03048AD2 cp ds:byte 8048306, 68N
03048AD9 jnz _ short failure

R iovarm

Figure 9: Top of "printing?"

[image: image8.jpg]P ———

¥

EAN L

}

08048ADE cnp
080u8AE2 jnz

ds:byte 8048308,

GE9h|
short failure

g

v

EAN L

08048AER nouzx edx, ds:byte BOABIED

83048AEB mouzx cax, ds:byte SEAS3EC

ssousarz shl edx, § 3 edx=FF00
630485 o edx, eax : edx=Ffco
08048AF7 mouzx cax, dsibyte BOABIOE ; cax=Ff
BsousarE sl cax, 160 3 eax=FF0000
68048801 o edx, eax : edx=FFFFcO
03048863 mouzx cax, dsibyte SOABIOF ; cax=Ff
3048800 sh1 cax, 18h 3 eax=FF000000
68048BOD or edx, eax ; edx=FFFFFFCO (-64)]
0304080F cnp byte ptr ds:_puts[eds], OFFh
83040816 lea ccx, [edx]

88648B1C_jnz short failure

EAN L

08048B1E cnp
08048822 jnz

byte ptr [ecx+1], 350
short failure

EAN L

08048824 movzx

edx, byte ptr [ecx+3]|

Figure 10: Next piece of "printing?"

6. In Figure 10 we see a reference to puts, just like the one we saw before to printf. I think what’s happening here is that IDA is resolving fixed .got.plt references as their function names. My guess is that Wrffr/Doc didn’t use the printf/puts in their code, they probably just used a fixed address to that portion of the ELF header as a reference point to “fix up” other .got.plt functions. At the end of this block ecx = 0x080482d0 which is the start of the .plt.
7. In working on the bottom half of “printing?” (Figure 11) I keep noticing addresses in the range of 0x59xxxx. I’m not really sure what these address are, but I think they point into a dynamic library. That range is between ld-linux.so.2 and libc.so.6 according to gdb.
8. There’s a little loop in the lower right hand corner of “printing?”, that is consuming the string “/lib/libc.so.6” byte by byte. When that is finished we go back up to 0x08048B56 or what I’ve labled as “TOP”. My guess is we’ll “consume” another string. This time through the string is “lib/ld-linux.so.2”. After that string is consumed we proceed to the end of the function. Ebx is zero, so eax ends up as zero, which means this function “failed”.
9. Hmm… rats, I’m not exactly sure what’s going here, but I feel like I’m close to understanding it. I can tell I’m too far down in the weeds. I think the best thing to do is figure out the multi byte XOR decryption in the XORing function.
[image: image9.jpg]08048856
080usB56 T0P:
08048856 nou
080u8B50 test
080u8B5B j2

eax, [ebx+4]
eax, eax
short eax_was_zero ; 0x595088

3 eax=0x5912¢b)

osousBol j2

EN N LL

03048850 nov edi, eax 3 came here|
03048B5F nov eax, [ebp+_686491140;
03048862 test eax, eax

short loc_8048BA5

EAN L

08048866 nou
08048869 nouzx
o8ousB6C test
08048B6E jz

ecx, [ebp+_68049140]
edx, byte ptr [ecx] ; 6x1c
d1, d1

short loc_8048BA6

3 came here|

5 wasn't zero

EAN L

08048870 nouzx
08048873 test
08048875 j2

eax, byte ptr [edi] ; eax-0x00
a1, a1 3 was o
short eax_uas zero ; 0x595988

00000856 [38048E56: printing?TOP

Graph overview

Figure 11: Bottom half of "printing?"

Layer 3: After the Initial RE work

Upon entering this investigation I knew there would be a function that uses the command line supplied key to decrypt internal strings used for function lookups. I’m assuming that’s the function I’ve called XORing. Also, I know there must be a way to use those strings to lookup the “hidden” functions. From Doc’s code that should be the find_func_by_name(). After some thought, that is probably the function I named “printing?”. “printing?” would look up the function names, and if it succeeds proceed by running whatever code the program actually uses. All of this functionality must then be in the function I first named “looping”. Figure 12 shows this new high level understanding.

XORing is fun!

In following my initial instincts I’ll let go of the “resolve_and_RunCode” function and focus on the “XOR_Decryption_via_argv1” function. What is the best way to break a multi-byte XOR? Perhaps, if I found the encrypted string, I could just write a program to XOR (brute force) in search of the key? However, if encrypted with a strong/long key, this is basically trying to crack encryption. Perhaps a frequency count in an effort to indentify the letter ‘e’
?
Counting E’s

I wrote some python code to count (what I believe is the encrypted string at 0x08049140) the frequency of each byte, XOR it with ‘e’ and ‘E’ to recover a possible key byte. The problem is I don’t really know how long the key is, and I’m assuming it’s a bunch of different bytes, not just one byte. So, even if I’ve found one key byte, I still don’t have a good way of finding the others.

Brute Forcing

I wonder how long it would take to try all 64^255 possibilities? I’m guessing way too long to brute force. For the task to be even remotely fair, there must be a way to recover the key via RE. Unless, perhaps there is some way to find a bit of plain text and somehow drastically reduce the key len/space?
Oh, what if I assume the string ‘libc’ is in the cipher text? That string must be in there if we hope to resolve any libc functions. Could (key-bytes ‘libc’) XOR with (Cipher-byte ‘XXXX’) = Plaintext of actual key?
Oh, cool, I just ran `./challenge gethostname`, guessing that than might also be one of the plaintext strings in the encrypted text and guess what I see in memory mixed in the with the encrypted junk now: “1@stPlaceFT”. Now that looks like a password that Wrffr/Doc would use!

But that doesn’t work when I type it in … how will I guess/brute the rest if there’s more to that password? When I inspect memory after using “1@stPlaceFT” as the password I can see that the first string in memory is “libc” (worked perfect here), but the second string is still a bunch of junk but I do see “gethostbyname” in the middle of it. It seems I need to add a couple more characters to my password. No, perhaps I just need to guess one more character to make a null byte after the gethostname. I found the character in memory right after the last ‘e’ in gethostname and it was a ‘W’. W XOR W == 0. AHHHHHHHHHHHH, so it’s 1@stPlaceFTW (for-the-win) is the KEY!!!
When type in this yields:

./challenge 1@stPlaceFTW

Congratulations localhost.localdomain!

So all the actual code does use the gethostname function, like before to look up my host and print the winning message … all that work for that? Sure, it’s called training. (
Summary

This was an awesome problem; it touched on many different elements in computing and security – compiling, linking, file formats, reverse engineering, basic cryptography, etc.
The one slight issue I have with it, is that it doesn’t seem too realistic. For example, actual malware couldn’t do this, because the “victim” certainly wouldn’t know the key. The key, or method of decryption, would have to be embedded within the code for it to run automatically.

Anyway, Great job Wrffr and Doc! (

-JROD
Figure � SEQ Figure * ARABIC �1�: Looking for main()

Test to see if “decryption” worked.

“Decrypt” runtime function addresses

Figure 6: "Looping" Overview

If “printing?” fails we leave “looping” as well

The next 3 cmps are zero so we don’t jump to failure

cmp results in the zero flag being set, so we’ll branch to ok

What are these 3 moves all about?

I believe puts is being resolved by IDA, but only used as .got reference.

Figure 12: New – Compare to Figure 2

� Malware is a different animal and needs to be done in a safe environment. See �HYPERLINK "http://www.vdalabs.com/tools/malware.html"�http://www.vdalabs.com/tools/malware.html�

� *nix is short had for Unix, Linux, and similar systems

� System calls are OS functions called from user programs.

� A sandbox may also be used to gain highlevel behavioral understand. See the same vdalabs malware paper.

� If it’s seriously named that, I’d bet you $100 you could. See my fuzzing work on well known software vs. home grown software.

� I generally like the combo approach for difficult problems

� Inspector of HBGary has tried

� There are other disassemblers, including Doc/Wrffr’s homegrown one, but IDA is by far the most popular

� For a more complete reference see: �HYPERLINK "http://www.securityfocus.com/infocus/1872"�http://www.securityfocus.com/infocus/1872�

� Sometimes the GOT is referred to as a function jump table.

� Might also call this function a ‘library function’, ‘API call’, etc.

� Ok, I mean Doc/Wrffr, but this is an evil little trick. (

� This doesn’t really tell me much I didn’t suspect, but it’s good to check

� Wiki that if you don’t know what a red herring is.

� gdb is really bad with stripped binaries in general, and is also no good at following new threads. Ollydbg/Imdbg for Windows is definitely much easier to use.

� I’d challenge you to find a copy of challenge and follow along if possible

� Lookup argc/argv if you don’t understand those two.

� Args is short for function arguments.

� And after a break to let it all “sink in”. Some breaks are good with this type of work. Not too long, so that you forget where you were, but brain rest == good.

� Basic crypt cracking ideas. E is the most common letter in the English alphabet, so if you find one byte that occurs frequently, perhaps that is the E.

15 | Page

