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Quantum Capabilities

What properties of quantum mechanics do we exploit?

o Indivisibility ‘
« No arbitrary copying h 4®:§
[1] Wooters, 1983

e State Measurement

® ... and, in more esoteric schemes, quantum correlation (entanglement)

NIST

BIaCkH at 8/7/08 National Institute of Standards and Technology

Technology Administration, U.S. Department of Commerce




Measuring Quantum States

Measure a quantum state that has some property "# “...

There Is a trade-off between information about an
unknown quantum state and disturbance of that state.

Great for cryptography
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Quantum Cryptography

It is possible to send and receive individual quanta and
detect If state measurements have been made en route.

> Sensitivity to eavesdropping

e Source and detect individual quanta — technology development
* Requires an additional communications channel

 Evidence of eavesdropping is statistical
 Unpredictability requires randomness

— Not transmitting messages from point A to point B on the
quantum channel

> Key distribution [2] Gisin (2002)
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QKD Protocols

1. Prepare and Measure: [3] Bennett (1984), [4] Weisner (1983).
e Send photons in a set of non-orthogonal bases:
«  Polarization: (T, ) & ( A,R). & Free-space
 Relative phase: (0°, 180°) & (90°, 270°) < Fiber

2. Quantum Correlations: entangled photon pairs
« Polarization entanglement: [5] Ekert (1992)

4 ) ~ ) _
-0'> Photon 1 goes to Alice
AND
=8> photon? goes to Bob
- J - J
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QKD in the BB34 Protocol

(non-orthogonal bases)

Alice Bob
Pick a basis Pick a basis
&
Pickabitvalue . pasis sets: I\/Ieasure pol.
e.g. polarization
\
c\\‘z‘““e
o

Alice’s bit value
Alice’s polarization

Bob's meas. basis
Bob's result
Same basis?
SIFTED KEY >

BlackHat 8/7/08
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Single-Photon Source — Quick & Dirty

Laser Statistics: one can S T T m Momn Photon = o1]
set some average number 2
0.8
of photons per pulse. =
5
\ E 0.6
o
oy ;
Laser - | = s
2
°—§ 0.2
S
Pro. Cheap, fast, easy to use -9 B _
Con: 1/10 Tx rate, security Y01 23 4 35 6 7 8 9 w0
N
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NIST’s Focus to Date

Encryption with QKD requires:
Authentication
Transmission and detection of single photons,
Another (classical) communication channel,
Error Correction,
Privacy Amplification,
and finally, a cipher.
What are the speed limits in single-photon QKD?
—> Physical Layer (the single photon channel)
- [6] Rogers (2007).
- [7] Xu (2007).
- [8] Bienfang (2004).
—> Error Correction and Privacy Amplification
- [9] Nakassis (2004).
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High-speed QKD in a Global Network

In the absence of a quantum repeater, a LEO QKD satellite can span the
globe, but access time is limited by orbit and atmosphere.

A 400 km LEO satellite directly overhead is accessible for about 200 seconds
A
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High-speed Free-space QKD

* SNR Is enhanced with spatial & spectral filtering, and
temporal gating:

Attn. 850 nm
VCSELs

Classical @88000000000000888 Classical

0.8 nsec
8B/10B encoding/clock recovery

* A 0.8 ns gate Is equivalent to 1.25 Gbps signal
- Limited by detector jitter and recovery time
- Timing channel is a usable duplex channel for sifting
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Link Topology

1.5 km
Free-space
Optical Links

I PCI Bus PCI Bus {

Data RBS Quantum Data

Generation Channel Acquisition
Electronics Electronics

Clock Classical Channel 1 Clock Recovery

Classical Channel 2

_ Ethernet
Ch.1: Defines 2048-bit g-channel frames, Sifting

Ch.2: Error Correction, Privacy Amplification
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Rev. 1.0 Boards

a3 AR

Operating in Linux
with custom drivers
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Signal diagnostics at 1.25GHz
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High-Speed Error Correction

To expedite EC, we (A. Nakassis) incorporated forward
error correction (Hamming codes):

1. Segment and parity exchange
- Estimate error rate.

2. FEC round

—> Optimize segmentation:
50% have 0 errors —> Token holder generates & sends
35% have 1 error FI_EC code for those segments
13% have 2 errors with odd rlumbers of er.rors. 3 Reset
4% have 3... - FEC applied, token switched.
Some high-error segments are _
- Shuffle bits

identified & discarded. i
- Estimate error rate

& > If £ >10% return to step 2.

If ¢ <104 (~ 6 cycles) we apply a final round of FEC =» £ <107
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EC & PA Processing Rates
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Bit Rates at 625 MHz (2006)

—=— Sifted key rate

| = EC&PA rate Machine dependent
210 | | | | —> 400 kbps on 2.4 GHz
Pentium 1V
{18 DR || !
% (/\ Dual 3.0 GHz Xeon
g 110 + 0.950 Mbps at o = 0.15
ﬂi One-time-pad encrypted
VIR Streaming video at
512 kbps, 64 kbps
o // | | | audio.
0 0.02 004 006  0.08 0.1  More work to be done to achieve

Mean Photon Number Daylight operation

[l. Rech, S. Cova, et al. Politecnico di Milano]
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Single Photon Channels in Vis.

Solar & Scattered Photon Rate

Atmospheric Transmittance - 23km Visibilty
(MODTRAN)
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The Visible Solar Spectrum
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At the center of the H,
line background noise is

H_ Fraunhofer Window

reduced by ~7.5 dB.

Filters are excellent.

Fraunhofer HOﬂ - High Res. Solar Atlas
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Timing Resolution of SI-APDs

72 ps FWHM at 656 nm
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Faster QKD — Rev. 2.0 Board

Transceiver rates variable
ilii Y ‘ s up to 6 GHz (166 ps)
* Dedicated EC X =

channel {1 & ' e Dedicated EC channel &

o B PA processor
@1 chip PA . => up to 20 Mb/s input

Memory for > 200 km
Non-PClI interface (1)
|nt f
e"ra‘ﬁ =>» Portable
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Conclusion

e Bandwidth of BB84 QKD systems can be
maximized with clock recovery techniques

 Detectors will enable operation > 2.5 GHz

 Improved timing resolution reduces QBER and
extends the range of a FSO QKD system

e High-bandwidth one-time-pad encryption services
can be provided with quantum-generated key
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