
Trust No-one, Not Even 
Yourself OR The Weak Link 
Might Be Your Build Tools 

David Maynor
Research Engineer
ISS X-Force R&D



Thank god my source tree is safe!
“Developers normally expect attacks against their 
code, just not while it is being built”

• Simple security holes are becoming a thing of the past.
– Strcpy() and gets() problems are all but extinct. 
– Heap overflows can make reliable compromise across platforms and 

patch levels hard.
– Increase in built-in stack protection.



Thank god my source tree is safe!
(cont)

• Developers becoming better educated, they can find 
their own “low hanging fruit.”
– Increased security awareness has forced developers to consider 

security in the design process. 
– More educated bug hunters lead to a higher discovery rate.



Thank god my source tree is safe!
(cont)

• New security technologies making remote attacks less 
likely to succeed. 
– Widespread use of IDS/IPS/firewall/gateway antivirus technologies
– Stateful inspection and deep threat analysis technologies becoming 

commonplace
– Remote attacks becoming less likely to succeed even with 0day

• HTTP Proxies make things like connect back shells over port 80 less 
effective 

• NAT makes connecting directly to target machines harder 



Thank god my source tree is safe!
(cont)

• Where are the weak links in security now?
– Development is outsourced more
– Cost cutting is making strange bedfellows
– Open source projects are gaining more popularity in mission critical 

roles.



My compiler? You MUST be joking!
“The weak link might not be in you code content, 
but how you build it.”

• Is it possible?
– Can attackers really backdoor code as it is being built?
– Yes, otherwise this would be a boring speech
– Will it be noticed?

• Depends on the payload
• Different affects on different file formats
• Subtle OS changes like patching can break it



My compiler? You MUST be joking! (cont)

• Is it easy?
– No. This is a very complex attack.
– Requirements before one could even hope to succeed

• Access to build machine
• Expert knowledge of compiler and output file format
• Expert creation of payload

– Payload is the code that is being added, this can range from shell access to 
remote tracking



My compiler? You MUST be joking! (cont)

• What can the results of an attack like this yield?
– Email encryption program

• A copy of the plaintext is saved during creation of the ciphertext.
• A different key is used that the intended

– SSL
• Weaken server keys
• Allow for sniffing of ssl communications

– Banking application
• Create secret store of personal information
• Transmission of information to 3rd parties

– Kernel
• Allow for unauthorized elevated privileges 
• Allow process to be hidden from sysadmins and users



My compiler? You MUST be joking! (cont)

• How portable is this?
– Across operating systems?

• Win32 vs. linux vs. *nix
– Depends on the actual payload
– More than likely not

– Across file formats?
• PE vs. ELF vs. COFF

– This depends on where the payload is hidden
– More than likely not

– Across architectures? 
• RISC vs. CISC 

– This depends on how the payload is encoded.
– More than likely not



I use gcc, can I be affected by this?
“Open source tools may appear to be easy but still 
present a challenge.”

• A brief overview of gcc.
– Where does it come from? Who writes it?

• http://gcc.gnu.org
• 1.0 released May 23, 1987
• Current version (as of writing) 3.4.0
• Written by the Free Software Foundation

– What is it?
• More of a suite than a single tool.

– Supports C, C++, Objective-C, java,  ada, fortran frontends
– List of backend support at http://gcc.gnu.org/backends.html



I use gcc, can I be affected by this? (cont)

• What does gcc actually do to code?
– Phases of compiling
– Points where gcc modifies original code
– Optimizations 



I use gcc, can I be affected by this? (cont)

• How can an attacker use this to their advantage?
– Best Places to attack?

• _start
– glibc-2.3/sysdeps/i386/elf/start.S
– It set up initial environment variables
– Sets up command line arguments
– Calls main()

– Analysis of frontend/backend for attack points
• Things to consider

– Breaking the program
– compatibility



I use gcc, can I be affected by this? (cont)

• The payload
– C code
– X86 asm
– “shellcode”



I use gcc, can I be affected by this? (cont)

• EXAMPLE: Linking fun
– Add a stub to _start to call code in object file that is automatically 

added by a trojaned linker. 

• EXAMPLE: _start fun
– Code added to _start that creates a single udp packet every time 

the program is run.



My compiler is not open source, I must be safe…right? 
“How to trojan a compiler you do not have the source for…”

• Visual Studio 6.0
– Written by Microsoft
– Integrated development environment, compiler, assembler, linker.
– Used for windows development only, no cross compiling abilities.

• Weak links?
– crt0.c 

• From the comments at the beginning of the file: “This is the actual 
startup routine for apps.  It calls the user's main routine [w]main() or [w]
WinMain after performing C Run-Time Library initialization.”

• Its in C, does not require asm to craft a payload.



My compiler is not open source, I must be safe…right? 
(cont)

• Payload code:
– EXAMPLE: code in C++
– EXAMPLE: code is asm
– EXAMPLE: Adding code before main() or winmain()



I use an obscure compiler, I MUST be safe!
“Auditing less popular compilers for attack points.”

• LCC
– http://www.cs.princeton.edu/software/lcc/
– Covered in book “A Retargetable C Compiler “

• Awesome book
• Overheard at party “It’s the new dragon book”

– Popular for learning compiler internals

• How it differs from Visual Studio and gcc
– Less popular, not often used for mission critical apps
– Less optimazations



I use an obscure compiler, I MUST be safe! (cont)

• Binary analysis
– Best way to learn about something is use it:

• Build simple “hello world” program with lcc



I use an obscure compiler, I MUST be safe! (cont)

– Use nm to examine symbols created by lcc



I use an obscure compiler, I MUST be safe! (cont)

– Use objdump to examine code generated by compiler



I use an obscure compiler, I MUST be safe! (cont)

• How to interpert your findings.
– Determining what the compiler does to the code
– Finding stuff you didn’t write
– Finding where the compiler stores its code



Thankfully there are only basic attacks!!
“Aside from simple code injection, what else could be done?”

• Advance attack methods
– Adding code to getopt()
– Replacing safe functions with unsafe versions

• Dependent attack
– Do nothing if DEBUG is defined
– Only attack if there if it is a socket app
– Only attack if it is a setuid app



Thankfully there are only basic attacks!! 
(cont)

• EXAMPLE: bye-bye bounds checking



Thankfully there are only basic attacks!! 
(cont)

• Tools compilers work with and how they can turn 
against you!
– Linker
– Assembler
– Libtool
– ar



Other than 0wn1ng things, is this useful?
“There are often better ways to do these things, but in case of last resort, they 
work.”

• Tracking code
– Every binary built with the compiler has a machine specific hash 

added for better forensics. 
– Every binary built has code added that creates a UDP packet that is 

sent to an arbitrary address.
• Useful for honeypots
• Internal apps that should not leave a company 



How do I detect this?
“Creating the problem is easy, creating the solution is…not.”

• Stack  backtrace
– Standard library code should look the same
– Backtrace comparison of ELF bin should yield same known good 

results. 

• Signatures for compiler operations 
– Optimizations
– standard functions
– Step by step verification of code at runtime



Thanks!!

• This speech was inspired by Ken Thompson’s excellent 
piece for the ACM: Reflections on Trusting Trust.
– http://www.acm.org/classics/sep95/


