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Outline

• Establishing a need for testing methodologies
– Testing for researchers
– Testing for customers

• Requirements for IDS testing
– Some theory here... sorry !

• State of the art
– Academic test methodologies
– Industry test methodologies (?)

• Recommendations and proposals



The need for testing

• Two basic types of questions

– Does it work ?
• If you didn't test it, it doesn't work (but it may

be pretending to)
• Includes: security testing

– Do I really need to rant about antiviruses?
– How well does it work ?

• Objective criteria
• Subjective criteria



Researchers vs. Customers

• What is testing for researchers ?
– Answers to the “how well” question in an

objective way
– Scientific = repeatable (Galileo, ~1650AD)

• What is testing for customers ?
– Answers to the “how well” question in a

subjective way

– Generally, very custom and not repeatable, esp.
if done on your own network



Relative vs. absolute

• Absolute, objective, standardized evaluation
– Repeatable
– Based on rational, open, disclosed,

unbiased standards
– Scientifically sound

• Relative evaluation
– “What is better among these two ?”
– Not necessarily repeatable, but should be

open and unbiased as much as possible
– Good for buy decisions



IDS requirements and metrics

• A good test needs a definition of requirements
and metrics
– Requirements: “does it work ?”
– Metrics: “how well ?”
– I know software engineers could kill me for this simplification,

but who cares about them anyway ? :)

• Requirements and metrics are not very well
defined in literature & on the market, but we
will try to draw up some in the following

• Let me focus for simplicity on Network IDS



False positives and negatives?

• Should alert on intrusions
– False Negative issue
– Polymorphism and evasion
– “zero-day” detection (duh !)
– Traffic overload and packet loss

• Should not alert on non intrusions
– False positives issue



Testing IDS (naïve approach)

• Simulated attack data
– Execution of exploits (as downloaded from

the usual sources)
• Real-world sample traffic

– Intermixed with execution of exploits
• Examples of the concept:

– LL/MIT evaluations (with truth files!)
– Other data sets (UCSB Treasure Hunt,

Defcon CTF) lack a truth file
• Anyway it's simple: count false positives

and false negatives ! Isn't it ?!



NO !!!
It's awfully

complicated !



Anomaly vs. Misuse

• Describes normal
behaviour, and flags
deviations

• Can recognize any
attack (also 0-days)

• Depends on the
model, the metrics
and the thresholds

• Statistical alerts

• Uses a knowledge
base to recognize the
attacks

• Can recognize only
attacks for which a
“signature” exists

• Depends on the
quality of the rules

• Precise alerts



Misuse Detection Caveats

• It's all in the rules
– Are we benchmarking the engine or the ruleset ?

• Badly written rule causes positives, are they FP
?

• Missing rule does not fire, is this a FN ?
– How do we measure coverage ?

• Correct rule matches attack traffic out-of-context
(e.g. IIS rule on a LAMP machine), is this a FP ?

– This form of tuning can change everything !
– For commercial IDSs this may make little sense, but

for Snort makes a lot of sense
• A misuse detector alone will never catch a zero-day

attack, with a few exceptions



Anomaly Detection Caveats

• No rules, but this means...
– Training

• How long do we train the IDS ? How realistic is
the training traffic ?

– Testing
• How similar to the training traffic is the test traffic

? How are the attacks embedded in ?
– Tuning of threshold (more on this later)

• Anomaly detectors:
– If you send a sufficiently strange, non attack

packet, it will be flagged. Is that  a “false
positive” for an anomaly detector ?



An issue of polimorphism

• Computer attacks are polimorph
– So what ? Viruses are polimorph too !

• Viruses are as polimorph as a program can be,
attacks are as polimorph as a human can be

– Good signatures capture the vulnerability,
bad signatures the exploit

• Plus there's a wide range of:
– evasion techniques

• [Ptacek and Newsham 1998] or [Handley and
Paxson 2001]

– mutations
• see ADMmutate by K-2, UTF encoding, etc.



Evaluating polimorphism
resistance

• Open source KB and engines
– Good signatures should catch key steps in

exploiting a vulnerability
• Not key steps of a particular exploit

– Engine should canonicalize where needed
• Proprietary engine and/or KB

– Signature reverse engineering (signature
shaping)

– Mutant exploit generation



Signature Testing
Using Mutant Exploits

• Sploit implements this form of testing
– Developed at UCSB (G.Vigna, W.Robertson) and

Politecnico (D. Balzarotti - kudos)
• Generates mutants of an exploit by applying a

number of mutant operators
• Executes the mutant exploits against target
• Uses an oracle to verify the effectiveness
• Analyzes IDS results

• Similar earlier efforts
• Thor (R. Marty), much more limited
• AGENT (Rubin, Jha, and Miller): formal, based

on logical induction for mutations



Architecture of Sploit
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Examples of mutations

• Network and transport layer
– Ipv6, IP Fragmentation, TCP/UDP Splitting

• Session and presentation layer
– SSL, RPC

• Application-layer
– Protocol rounds, protocol-specific

techniques (e.g. for FTP, HTTP...)
• “Exploit-layer”

– Shellcode mutations, alternate encodings



Example of Results
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Comments on Sploit

• A great idea, with some intrinsic limits:
– Tests engine and signatures together
– Qualitative, more than quantitative
– Strongly dependent on exploit and mutation

templates quality and selection
• We could bias the test result, if used to

compare two different intrusion detection
systems

• In conclusion, Sploit is great for testing IDSs and their
rulebase, but has some limits if used as an evaluation
or comparison tool



Measuring Coverage

• If ICSA Labs measure coverage of anti virus programs
(“100% detection rate”) why can't we measure
coverage of IDS ?
– Well, in fact ICSA is thinking about it... see

https://www.icsalabs.com/icsa/main.php?pid=jgh47
5fg

– Problem:
• we have rather good zoo virus lists
• we do not have good vulnerability lists,let alone

a reliable wild exploit list
• We cannot absolutely measure coverage, but we can

perform relative coverage analysis (but beware of
biases)



How to Measure Coverage

• Offline coverage testing
– Pick signature list, count it, and

normalize it on a standard list
– Signatures are not always disclosed
– Cannot cross compare anomaly and

misuse based IDS
• Online coverage testing

– We do not have all the issues but
– How we generate the attack traffic could

somehow influence the test accuracy



False positives and negatives

• Let's get back to our first idea of
“false positives and false negatives”
– All the issues with the definition of false

positives and negatives stand
• Naïve approach:

– Generate realistic background traffic
– Superimpose a set of attacks
– Feed the test data to the IDS
– Compare IDS alerts with attacks, mark

false positives & false negatives
• We are all set, aren't we ?



Background traffic
• Too easy to say “background traffic”

– Use real data ?
• Realism 100% but not repeatable or standard
• Privacy issues
• Good for relative, not for absolute, eval

– Use sanitized data ?
• Sanitization may introduce statistical biases

– e.g. character distribution in sanitized packets
• Network peculiarities may induce higher DR
• The more we preserve, the more we risk

– In either case:
• Attacks or anomalous packets could be present!



Background traffic (cont)
• So, let's really generate it

– Use “noise generation” ?
• Algorithms depend heavily on content,

concurrent session impact, etc.
– Use artificially generated data ?

• Approach taken by DARPA, USAF...
• Create testbed network and use traffic

generators to “simulate” user interaction
• This is a good way to create a repeatable,

scientific test on solid ground
– Use no background.... yeah, right
– What about broken packets ?

• http://lcamtuf.coredump.cx/mobp/



Attack generation

• Collecting scripts and running them
is not enough
– How many do you use ?
– How do you choose them ?
– Do you use evasion ?
– You need to run them against

vulnerable and not vulnerable machines
– They need to blend in perfectly with the

background traffic
• Again: most of these issues are

easier to solve on a testbed



Datasets or testbed tools ?
• Diffusion of datasets has well-known

shortcomings
– Datasets for high speed networks are huge
– Replaying datasets, mixing them,

superimposing attacks creates artefacts that
are easy to detect

• E.g. TTLs and TOS in IDEVAL
– Tcpreplay timestamps may not be accurate

enough
• Good TCP anomaly engines will detect it's

not a true stateful communication
• Easier to describe a testbed (once again)



Generating a testbed

• We need a realistic network...
– Scriptable clients

• We are producing a suite of suitable, GPL'ed
traffic generators (just ask if you want the alpha)

– Scriptable and allowing for modular expansion
– Statistically sound generation of intervals
– Distributed load on multiple slave clients

– Scriptable or real servers
• real ones are needed for running the attacks
• For the rest, Honeyd can create stubs

– If everything is FOSS, you can just describe
the setup and it will be repeatable !

• Kudos to Puketza et al, 1996



Suitable traffic mixes

• Q: “What does the Internet look like ?”
A: “How am I supposed to know ?!”
– Measurements: CAIDA, Cisco, our own
– All agree & disagree but some trends are:

• TCP is predominating (up to 95% on bytes, 85 to 90
on packets); UDP 5-10% P, ICMP 1-2% P

• HTTP dominant (75% B, 70% P for CAIDA, over 60%
P for Cisco, 65% P in our environment) but in slight
decreasing trend

• DNS, SMTP (5-8% P even) account for most of the
rest of Internet traffic; NNTP and FTP declining; on
“general” networks gaming and peer-to-peer traffic
can reach 10%

• Average packet size ~570 byte, many full-size



Do raw numbers really matter?

• If Dilbert is not a source reliable enough for you, cfr.
Hennessy and Patterson

• Personally, I prefer to trust Dilbert... kudos to
Scott Adams :-)

• Raw numbers seldom matter in performance, and even
less in IDS



ROC curves, then !

• Great concept from signal detection, but:
– they are painful to trace in real world
– they are more meaningful for anomaly IDS

than misuse IDS
• Depends, again, on definition of false positive



It is written “performance”...

• But it reads like “speed”
– If you want to measure “how fast” an IDS is, you

once again need to define your question
• Packets per second or bytes per second

(impacts NIC capacity, CPU, and memory bus
speed)

• Number of hosts, protocols and concurrent
connections (memory size and memory bus
speed, CPU speed)

• New connections per second (memory bus
speed, CPU speed)

• Alarms per second (memory size, CPU speed,
mass storage, network, whatever...)

– Each metric “measures” different things !



Load-testing IDS (2)

• Using TCP replay devices then ?
– At high speeds, buffer size issues requires

to use more replay interfaces
– Sync issues as well as aggregation issues
– As we said... traces are not really good for

many reasons on stateful devices



Network issues

• Network worries also:
– Traffic generators, attack network, victim

network are connected to a switch
– Span port capacity could limit the IDS

• On a Gb Ethernet port inter-packet arrival gap is
96 ns...

• If multiple Fast Ethernet ports, generating
~80Mbps, are used, multiple frames will happen
in a 96 ns bucket

• Port buffer fills up = the switch drops packets
• In real conditions, a choke point (such as a

router) will reduce the likelyhood for this to
happen



Metrics, metrics

• Once again: what to measure?
– Throughput ? Delay ? Discarded packets ?
– Connections/sec or packets/sec ?
– In theory, this thing acts like an M/M/1/c

finite capacity queue...
• Arrival process is Poisson (simplification, it

actually isn't)
• Service time is exponential (another

simplification, could be load-dependent)
• There is a finite buffer c (this is realistic)

– Rejection rate can be statistically computed



Is this really M/M/1/c ?

• We have a stateless traffic replication tool
named “Blabla” which we use for simple tests
– On commodity hardware can generate up to 50kps average

(100Mb) following an exp distribution with great accuracy

• We tested Snort 2.x and an old release of
Cisco IDS
– Raw numbers are meaningless, but they always are

• Both behave as M/M/1/c systems
– Mostly, adding open connections make them load-dependent
– Like any M/M/1/c system, the c parameter is a trade-off

between discarded packets and congestion (i.e. waiting time)
• This is important for moving a system in-line !
• It's not easy to tune on the Snort/Libpcap/Linux stack
• In our experiments, c turns out to be “small”



Queues quirks

• The queueing model also says...
– That traffic distribution matters !
– That packets/connections/open connections

ratios matter !
– Packets/bytes ratio matters !
– We have also verified, as others showed

before, that types of packets, rules and
checks impact on the service times

• So, all these things should be carefully
documented in tests... and you should read
them when evaluating other people tests



Existing tests I'm aware of

• A bit outdated
– Puzetzka at UC Davis (oldies but goldies)
– IBM Zurich labs (God knows)
– IDEVAL (more on this later)
– AFRL evaluations (cool, but not open)

• Current tests (2002-2003...)
– NSS group tests

http://www.nss.co.uk

– Neohapsis OSEC
http://osec.neohapsis.com/

– Miercom Labs/Network World
http://www.networkworld.com/reviews/2002/1104rev.html



MIT/LL and IDEVAL

• IDEVAL is the dataset created at MIT/LL
– Only available resource with synthetic traffic

and full dumps + system audit files
– Outdated systems and attacks
– Very few attack types, in particular host-

based IDS have just basic overflows...
– Well known weaknesses in NIDS data:

• TTLs, TOS, source IP, ... all detectable
– IDEVAL has been  used by each and every

researcher in the field (including me), i.e.
it has biased all the research efforts
since 1998



NSS Tests

• NSS Group tests are perhaps the most famous
industry testing ground

• On the whole, not bad, but:
– They are non repeatable (since attacks and other

parameters are unspecified)
• Being not really scientific and not really based

on a specific scenario, what's their aim
– Include lots of qualitative evaluations
– Use either noise or HTTP traffic for stress testing
– Unspecified distribution characters of traffic
– Aging attacks and evasions (for what we know)



Neohapsis / OSEC

• A new pretender on the block
• Good idea, an open, repeatalbe

methodology, but:
– Not addressing breadth of KB
– Use either noise or HTTP traffic for stress

testing
– Unspecified distribution characters of traffic
– Not really suitable for anomaly based

products



Miercom/Network World

• Less known than the others
• More journalistic than scientific
• Yet, a very good description of the setup,

the attacks, and the testing conditions
– Still not addressing breadth of KB
– Still HTTP traffic for stress testing
– Still unspecified distribution characters of

traffic
– But a very very good testing methodology

indeed



Conclusions

• Testing IDS is a real, huge mess
– But still, we must do something

• We are still far away from designing a complete,
scientific testing methodology
– But we can say a lot of things on wrong

methodologies
• You can try to design customer-need driven tests in

house
– Difficult, but the only thing you can do

• In general, beware of those who claim “My IDS is
better than yours”



QUESTIONS ?

Thanks for your attention !!!

Feedback/Followup/Insults welcome
stefano.zanero@polimi.it

s.zanero@securenetwork.it

Feel free to browse research, papers and
presentations

http://www.elet.polimi.it/upload/zanero
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