
My IDS is better than yours!
or... is it ?

Stefano Zanero
Ph.D. Candidate, Politecnico di Milano

CTO & Founder, Secure Network S.r.l.

Outline

• Establishing a need for testing methodologies
– Testing for researchers
– Testing for customers

• Requirements for IDS testing
– Some theory here... sorry !

• State of the art
– Academic test methodologies
– Industry test methodologies (?)

• Recommendations and proposals

The need for testing

• Two basic types of questions

– Does it work ?
• If you didn't test it, it doesn't work (but it may

be pretending to)
• Includes: security testing

– Do I really need to rant about antiviruses?
– How well does it work ?

• Objective criteria
• Subjective criteria

Researchers vs. Customers

• What is testing for researchers ?
– Answers to the “how well” question in an

objective way
– Scientific = repeatable (Galileo, ~1650AD)

• What is testing for customers ?
– Answers to the “how well” question in a

subjective way

– Generally, very custom and not repeatable, esp.
if done on your own network

Relative vs. absolute

• Absolute, objective, standardized evaluation
– Repeatable
– Based on rational, open, disclosed,

unbiased standards
– Scientifically sound

• Relative evaluation
– “What is better among these two ?”
– Not necessarily repeatable, but should be

open and unbiased as much as possible
– Good for buy decisions

IDS requirements and metrics

• A good test needs a definition of requirements
and metrics
– Requirements: “does it work ?”
– Metrics: “how well ?”
– I know software engineers could kill me for this simplification,

but who cares about them anyway ? :)

• Requirements and metrics are not very well
defined in literature & on the market, but we
will try to draw up some in the following

• Let me focus for simplicity on Network IDS

False positives and negatives?

• Should alert on intrusions
– False Negative issue
– Polymorphism and evasion
– “zero-day” detection (duh !)
– Traffic overload and packet loss

• Should not alert on non intrusions
– False positives issue

Testing IDS (naïve approach)

• Simulated attack data
– Execution of exploits (as downloaded from

the usual sources)
• Real-world sample traffic

– Intermixed with execution of exploits
• Examples of the concept:

– LL/MIT evaluations (with truth files!)
– Other data sets (UCSB Treasure Hunt,

Defcon CTF) lack a truth file
• Anyway it's simple: count false positives

and false negatives ! Isn't it ?!

NO !!!
It's awfully

complicated !

Anomaly vs. Misuse

• Describes normal
behaviour, and flags
deviations

• Can recognize any
attack (also 0-days)

• Depends on the
model, the metrics
and the thresholds

• Statistical alerts

• Uses a knowledge
base to recognize the
attacks

• Can recognize only
attacks for which a
“signature” exists

• Depends on the
quality of the rules

• Precise alerts

Misuse Detection Caveats

• It's all in the rules
– Are we benchmarking the engine or the ruleset ?

• Badly written rule causes positives, are they FP
?

• Missing rule does not fire, is this a FN ?
– How do we measure coverage ?

• Correct rule matches attack traffic out-of-context
(e.g. IIS rule on a LAMP machine), is this a FP ?

– This form of tuning can change everything !
– For commercial IDSs this may make little sense, but

for Snort makes a lot of sense
• A misuse detector alone will never catch a zero-day

attack, with a few exceptions

Anomaly Detection Caveats

• No rules, but this means...
– Training

• How long do we train the IDS ? How realistic is
the training traffic ?

– Testing
• How similar to the training traffic is the test traffic

? How are the attacks embedded in ?
– Tuning of threshold (more on this later)

• Anomaly detectors:
– If you send a sufficiently strange, non attack

packet, it will be flagged. Is that a “false
positive” for an anomaly detector ?

An issue of polimorphism

• Computer attacks are polimorph
– So what ? Viruses are polimorph too !

• Viruses are as polimorph as a program can be,
attacks are as polimorph as a human can be

– Good signatures capture the vulnerability,
bad signatures the exploit

• Plus there's a wide range of:
– evasion techniques

• [Ptacek and Newsham 1998] or [Handley and
Paxson 2001]

– mutations
• see ADMmutate by K-2, UTF encoding, etc.

Evaluating polimorphism
resistance

• Open source KB and engines
– Good signatures should catch key steps in

exploiting a vulnerability
• Not key steps of a particular exploit

– Engine should canonicalize where needed
• Proprietary engine and/or KB

– Signature reverse engineering (signature
shaping)

– Mutant exploit generation

Signature Testing
Using Mutant Exploits

• Sploit implements this form of testing
– Developed at UCSB (G.Vigna, W.Robertson) and

Politecnico (D. Balzarotti - kudos)
• Generates mutants of an exploit by applying a

number of mutant operators
• Executes the mutant exploits against target
• Uses an oracle to verify the effectiveness
• Analyzes IDS results

• Similar earlier efforts
• Thor (R. Marty), much more limited
• AGENT (Rubin, Jha, and Miller): formal, based

on logical induction for mutations

Architecture of Sploit

Exploit
Templates

Exploit
Templates

Mutant
Operators

Mutant
Operators

IDS 1IDS 1Mutant
Exploits
Mutant

Exploits

Target
Application

Target
Application

Mutation Engine Target
Application

Target
Application

Target
Application

Target
ApplicationIDS 2IDS 2

AlertsAlerts AlertsAlerts

OracleOracleEvaluatorEvaluator

ResultResult

Examples of mutations

• Network and transport layer
– Ipv6, IP Fragmentation, TCP/UDP Splitting

• Session and presentation layer
– SSL, RPC

• Application-layer
– Protocol rounds, protocol-specific

techniques (e.g. for FTP, HTTP...)
• “Exploit-layer”

– Shellcode mutations, alternate encodings

Example of Results

Telnet ctrl seqEvadedDetectedTelnet ctrl seq

IP splitting

EvadedDetectedWSFTP

SSL Null recordEvadedDetectedSSL Null recordEvadedDetectedSSLMSKEY

HTTP evasionEvadedDetectedDetectedDetectedIISDD

HTTP evasionEvadedDetectedURL encodingEvadedDetectedIISUNI

DetectedDetectedDetectedDetectedDCOMRPC

HTTP evasionEvadedDetectedDetectedDetectedISSNSLOG

HTTP evasionEvadedDetectedDetectedDetectedISSISAPI

ISS RealSecureSnort

Evaded

Evaded

Evaded

Mutated

Attack

HTTP evasionDetectedHTTP evasionEvadedDetectedHTTPCNK

Junk char insertionDetectedZero prefix

Shellcode

EvadedDetectedWUIMAP

Telnet ctrl seq

Shellcode

DetectedTelnet ctrl seq

Shellcode

IP splitting

EvadedDetectedWUFTP

Evasion TechniqueBaseline

Attack

Evasion TechniqueMutated

Attack

Baseline

Attack

Exploit

Comments on Sploit

• A great idea, with some intrinsic limits:
– Tests engine and signatures together
– Qualitative, more than quantitative
– Strongly dependent on exploit and mutation

templates quality and selection
• We could bias the test result, if used to

compare two different intrusion detection
systems

• In conclusion, Sploit is great for testing IDSs and their
rulebase, but has some limits if used as an evaluation
or comparison tool

Measuring Coverage

• If ICSA Labs measure coverage of anti virus programs
(“100% detection rate”) why can't we measure
coverage of IDS ?
– Well, in fact ICSA is thinking about it... see

https://www.icsalabs.com/icsa/main.php?pid=jgh47
5fg

– Problem:
• we have rather good zoo virus lists
• we do not have good vulnerability lists,let alone

a reliable wild exploit list
• We cannot absolutely measure coverage, but we can

perform relative coverage analysis (but beware of
biases)

How to Measure Coverage

• Offline coverage testing
– Pick signature list, count it, and

normalize it on a standard list
– Signatures are not always disclosed
– Cannot cross compare anomaly and

misuse based IDS
• Online coverage testing

– We do not have all the issues but
– How we generate the attack traffic could

somehow influence the test accuracy

False positives and negatives

• Let's get back to our first idea of
“false positives and false negatives”
– All the issues with the definition of false

positives and negatives stand
• Naïve approach:

– Generate realistic background traffic
– Superimpose a set of attacks
– Feed the test data to the IDS
– Compare IDS alerts with attacks, mark

false positives & false negatives
• We are all set, aren't we ?

Background traffic
• Too easy to say “background traffic”

– Use real data ?
• Realism 100% but not repeatable or standard
• Privacy issues
• Good for relative, not for absolute, eval

– Use sanitized data ?
• Sanitization may introduce statistical biases

– e.g. character distribution in sanitized packets
• Network peculiarities may induce higher DR
• The more we preserve, the more we risk

– In either case:
• Attacks or anomalous packets could be present!

Background traffic (cont)
• So, let's really generate it

– Use “noise generation” ?
• Algorithms depend heavily on content,

concurrent session impact, etc.
– Use artificially generated data ?

• Approach taken by DARPA, USAF...
• Create testbed network and use traffic

generators to “simulate” user interaction
• This is a good way to create a repeatable,

scientific test on solid ground
– Use no background.... yeah, right
– What about broken packets ?

• http://lcamtuf.coredump.cx/mobp/

Attack generation

• Collecting scripts and running them
is not enough
– How many do you use ?
– How do you choose them ?
– Do you use evasion ?
– You need to run them against

vulnerable and not vulnerable machines
– They need to blend in perfectly with the

background traffic
• Again: most of these issues are

easier to solve on a testbed

Datasets or testbed tools ?
• Diffusion of datasets has well-known

shortcomings
– Datasets for high speed networks are huge
– Replaying datasets, mixing them,

superimposing attacks creates artefacts that
are easy to detect

• E.g. TTLs and TOS in IDEVAL
– Tcpreplay timestamps may not be accurate

enough
• Good TCP anomaly engines will detect it's

not a true stateful communication
• Easier to describe a testbed (once again)

Generating a testbed

• We need a realistic network...
– Scriptable clients

• We are producing a suite of suitable, GPL'ed
traffic generators (just ask if you want the alpha)

– Scriptable and allowing for modular expansion
– Statistically sound generation of intervals
– Distributed load on multiple slave clients

– Scriptable or real servers
• real ones are needed for running the attacks
• For the rest, Honeyd can create stubs

– If everything is FOSS, you can just describe
the setup and it will be repeatable !

• Kudos to Puketza et al, 1996

Suitable traffic mixes

• Q: “What does the Internet look like ?”
A: “How am I supposed to know ?!”
– Measurements: CAIDA, Cisco, our own
– All agree & disagree but some trends are:

• TCP is predominating (up to 95% on bytes, 85 to 90
on packets); UDP 5-10% P, ICMP 1-2% P

• HTTP dominant (75% B, 70% P for CAIDA, over 60%
P for Cisco, 65% P in our environment) but in slight
decreasing trend

• DNS, SMTP (5-8% P even) account for most of the
rest of Internet traffic; NNTP and FTP declining; on
“general” networks gaming and peer-to-peer traffic
can reach 10%

• Average packet size ~570 byte, many full-size

Do raw numbers really matter?

• If Dilbert is not a source reliable enough for you, cfr.
Hennessy and Patterson

• Personally, I prefer to trust Dilbert... kudos to
Scott Adams :-)

• Raw numbers seldom matter in performance, and even
less in IDS

ROC curves, then !

• Great concept from signal detection, but:
– they are painful to trace in real world
– they are more meaningful for anomaly IDS

than misuse IDS
• Depends, again, on definition of false positive

It is written “performance”...

• But it reads like “speed”
– If you want to measure “how fast” an IDS is, you

once again need to define your question
• Packets per second or bytes per second

(impacts NIC capacity, CPU, and memory bus
speed)

• Number of hosts, protocols and concurrent
connections (memory size and memory bus
speed, CPU speed)

• New connections per second (memory bus
speed, CPU speed)

• Alarms per second (memory size, CPU speed,
mass storage, network, whatever...)

– Each metric “measures” different things !

Load-testing IDS (2)

• Using TCP replay devices then ?
– At high speeds, buffer size issues requires

to use more replay interfaces
– Sync issues as well as aggregation issues
– As we said... traces are not really good for

many reasons on stateful devices

Network issues

• Network worries also:
– Traffic generators, attack network, victim

network are connected to a switch
– Span port capacity could limit the IDS

• On a Gb Ethernet port inter-packet arrival gap is
96 ns...

• If multiple Fast Ethernet ports, generating
~80Mbps, are used, multiple frames will happen
in a 96 ns bucket

• Port buffer fills up = the switch drops packets
• In real conditions, a choke point (such as a

router) will reduce the likelyhood for this to
happen

Metrics, metrics

• Once again: what to measure?
– Throughput ? Delay ? Discarded packets ?
– Connections/sec or packets/sec ?
– In theory, this thing acts like an M/M/1/c

finite capacity queue...
• Arrival process is Poisson (simplification, it

actually isn't)
• Service time is exponential (another

simplification, could be load-dependent)
• There is a finite buffer c (this is realistic)

– Rejection rate can be statistically computed

Is this really M/M/1/c ?

• We have a stateless traffic replication tool
named “Blabla” which we use for simple tests
– On commodity hardware can generate up to 50kps average

(100Mb) following an exp distribution with great accuracy

• We tested Snort 2.x and an old release of
Cisco IDS
– Raw numbers are meaningless, but they always are

• Both behave as M/M/1/c systems
– Mostly, adding open connections make them load-dependent
– Like any M/M/1/c system, the c parameter is a trade-off

between discarded packets and congestion (i.e. waiting time)
• This is important for moving a system in-line !
• It's not easy to tune on the Snort/Libpcap/Linux stack
• In our experiments, c turns out to be “small”

Queues quirks

• The queueing model also says...
– That traffic distribution matters !
– That packets/connections/open connections

ratios matter !
– Packets/bytes ratio matters !
– We have also verified, as others showed

before, that types of packets, rules and
checks impact on the service times

• So, all these things should be carefully
documented in tests... and you should read
them when evaluating other people tests

Existing tests I'm aware of

• A bit outdated
– Puzetzka at UC Davis (oldies but goldies)
– IBM Zurich labs (God knows)
– IDEVAL (more on this later)
– AFRL evaluations (cool, but not open)

• Current tests (2002-2003...)
– NSS group tests

http://www.nss.co.uk

– Neohapsis OSEC
http://osec.neohapsis.com/

– Miercom Labs/Network World
http://www.networkworld.com/reviews/2002/1104rev.html

MIT/LL and IDEVAL

• IDEVAL is the dataset created at MIT/LL
– Only available resource with synthetic traffic

and full dumps + system audit files
– Outdated systems and attacks
– Very few attack types, in particular host-

based IDS have just basic overflows...
– Well known weaknesses in NIDS data:

• TTLs, TOS, source IP, ... all detectable
– IDEVAL has been used by each and every

researcher in the field (including me), i.e.
it has biased all the research efforts
since 1998

NSS Tests

• NSS Group tests are perhaps the most famous
industry testing ground

• On the whole, not bad, but:
– They are non repeatable (since attacks and other

parameters are unspecified)
• Being not really scientific and not really based

on a specific scenario, what's their aim
– Include lots of qualitative evaluations
– Use either noise or HTTP traffic for stress testing
– Unspecified distribution characters of traffic
– Aging attacks and evasions (for what we know)

Neohapsis / OSEC

• A new pretender on the block
• Good idea, an open, repeatalbe

methodology, but:
– Not addressing breadth of KB
– Use either noise or HTTP traffic for stress

testing
– Unspecified distribution characters of traffic
– Not really suitable for anomaly based

products

Miercom/Network World

• Less known than the others
• More journalistic than scientific
• Yet, a very good description of the setup,

the attacks, and the testing conditions
– Still not addressing breadth of KB
– Still HTTP traffic for stress testing
– Still unspecified distribution characters of

traffic
– But a very very good testing methodology

indeed

Conclusions

• Testing IDS is a real, huge mess
– But still, we must do something

• We are still far away from designing a complete,
scientific testing methodology
– But we can say a lot of things on wrong

methodologies
• You can try to design customer-need driven tests in

house
– Difficult, but the only thing you can do

• In general, beware of those who claim “My IDS is
better than yours”

QUESTIONS ?

Thanks for your attention !!!

Feedback/Followup/Insults welcome
stefano.zanero@polimi.it

s.zanero@securenetwork.it

Feel free to browse research, papers and
presentations

http://www.elet.polimi.it/upload/zanero

Bibliography

• Traffic measurements, internet traffic mixes
– K. Claffy, G. Miller, K. Thompson: The Nature of the Beast:

Recent Traffic Measurements from an Internet Backbone
http://www.caida.org/outreach/-papers/1998/Inet98/ (1998)

– S. McCreary, K. Claffy: Trends in Wide Area IP Traffic
Patterns: A View from Ames Internet Exchange.
http://www.caida.org/outreach/papers/2000/-AIX0005/ (2000)

• Polimorphism resistance testing
– G. Vigna, W. Robertson, D. Balzarotti: Testing Network-

based Intrusion Detection Signatures Using Mutant
Exploits, ACM CCS 2004

– S. Rubin, S. Jha, B. P. Miller: Automatic Generation and
Analysis of NIDS Attacks, ACSAC 2004.

• General performance literature
– D. Patterson, J. Hennessy: Computer Organization and

Design: the Hardware/Software interface, 3rd ed., Morgan-
Kauffman

Bibliography (2)

• General IDS testing literature
– M. Hall, K. Wiley: Capacity Verification for High Speed

Network Intrusion Detection Systems
http://www.cisco.com/en/US/products/hw/vpndevc/ps4077
/prod_technical_reference09186a0080124525.html

– M. J. Ranum: Experiences benchmarking Intrusion
Detection Systems,
http://www.snort.org/docs/Benchmarking-IDS-NFR.pdf

– N. Athanasiades, R. Abler, J. Levine, H. Owen, G. Riley:
Intrusion Detection Testing and Benchmarking
Methodologies, 1st IEEE International Information
Assurance Workshop, 2003

– P. Mell,V. Hu, R. Lippmann, J. Haines, M. Zissman: An
Overview of Issues in Testing Intrusion Detection
Systems, NIST – LL/MIT, 2003

– N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, R. A.
Olsson: A Methodology for Testing Intrusion Detection
Systems, IEEE Transactions on Software Engineering,
1996

Bibliography (3)

• IDEVAL and MIT efforts
– K. Kendall: A database of computer attacks for the

evaluation of intrusion detection systems. Master's thesis,
MIT, 1999

– R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, K. Das:
Analysis and results of the 1999 DARPA off-line intrusion
detection evaluation. Proceedings of the 3rd International
Workshop on Recent Advances in Intrusion Detection,
Springer-Verlag

– John McHugh: Testing intrusion detection systems: a
critique of the 1998 and 1999 DARPA intrusion detection
system evaluations as performed by Lincoln laboratory.
ACM Trans. on Information and System Security, 3(4):262-
294, 2000.

– M. V. Mahoney, P. K. Chan: An analysis of the 1999
DARPA / Lincoln laboratory evaluation data for network
anomaly detection. In Proceedings of the 6th International
Symposium on Recent Advances in Intrusion Detection
(RAID 2003), Pittsburgh, PA, USA, September 2003.

