
Finding Digital Evidence In
Physical Memory

Mariusz Burdach

Overview

• Introduction
• Anti-forensics
• Acquisition methods
• Windows memory analysis
• Linux memory analysis
• Detecting hidden data on a live system
• Q & A

Past, Present & Future

• Forensic Analysis = File System Forensic
Analysis
– Well-developed procedures for seizing digital

evidence from hard disk (i.e. Imaging a hard
disk)

– Quite difficult to tamper evidence during
collecting data

– Well-known methods of analysis

Past, Present & Future

• Some evidence is temporary stored in
swap space

• Some evidence resides only in storages
(i.e. volatile memory)

• Anti-forensics
– Data contraception
– Data hiding
– Data destruction

Analysis Types

Physical Storage Media Analysis Network Analysis

Volume Analysis Memory Analysis

File System
Analysis

Database
Analysis

Swap Space
Analysis

Application
Analysis

Source: „File System Forensic Analysis”, Brian Carrier

Anti-forensics

• Syscall proxying - it transparently „proxies” a
process’ system calls to a remote server:
– Examples: CORE Impact, Immunity CANVAS

• In-Memory Library Injection – a library is
loaded into memory without any disk activity:
– Metasploit’s Meterpreter (e.g. SAM Juicer)

Anti-forensics

• Anti-forensic projects focused on data
contraception:
– „Remote Execution of binary without creating a

file on disk” by grugq (Phrack #62)
– „Advanced Antiforensics : SELF” by Pluf & Ripe

(Phrack #63)

Anti-forensics

• Advanced rootkits
– Evidence gathering or incident response

tools can be easily cheated
– Examples: Hacker Defender/Antidetection,

FU/Shadow Walker
• In memory worms/rootkits

– Their codes exist only in a volatile memory
and they are installed covertly via an
exploit

– Example: Witty worm (no file payload)

Past, Present & Future

• If it is possible – a physical memory from a
suspicious computer has to be collected

• The operating system swaps out constantly
some data from a physical memory to hard
disk

• During forensic analysis of file systems we
could correlate data from swap space with
data which is resident in a main memory

How to acquire volatile data?
• All data in a main memory is volatile – it

refers to data on a live system. A volatile
memory loses its contents when a system is
shut down or rebooted

• It is impossible to verify an integrity of data
• Acquisition is usually performed in a timely

manner (Order of Volatility - RFC 3227)
• Physical backup instead of logical backup
• Volatile memory acquisition procedures can

be:
– Software-based
– Hardware-based

Software-based methods

• Software-based memory acquisitions:
– A trusted toolkit has to be used to collect volatile

data
– Every action performed on a system, whether

initiated by a person or by the OS itself, will alter
the content of memory:

• The tool will cause known data to be written to the
source

• The tool can overwrite evidence

– It is highly possible to cheat results collected in
this way

Hardware-based methods

• Hardware-based memory acquisitions:
– We can access memory without relying on the

operating system, suspending the CPU and using
DMA (Direct Memory Access) to copy contents of
physical memory (e.g. TRIBBLE – PoC Device)

• Related work (Copilot Kernel Integrity Monitor, EBSA-
285)

– The FIREWIRE/IEEE 1394 specification allows
clients’ devices for a direct access to a host
memory, bypassing the operating system (128 MB
= 15 seconds)

• Example: Several demos are available at
http://blogs.23.nu/RedTeam/stories/5201/ by RedTeam

Physical Memory Devices

• \\.\PhysicalMemory - device object in Microsoft
Windows 2000/2003/XP

• /dev/mem – device in many Unix/Linux systems
• /proc/kcore – some pseudo-filesystems provides

access to a physical memory through /proc
• Software-based acquisition procedure

 dd.exe if=\\.\PhysicalMemory
of=\\<remote_share>\memorydump.img

• DD for Windows - Forensic Acquisition Utilities is
available at http://users.erols.com/gmgarner/forensics/

• DD for Linux by default included in each distribution
(part of GNU File Utilities)

Projects

• Web page: http://forensic.seccure.net
• Analysis of Windows memory images

– WMFT - Windows Memory Forensics Toolkit
– Written in C#
– .NET 2.0 Framework

• Analysis of Linux memory images
– gdb tool is enough to analyze a memory image,

but we can simplify some tasks by using the
IDETECT toolkit

• These tools could be used on a live system as
an integral part of incident response toolkit

DFRWS Challenge 2005

• Digital Forensic Research WorkShop
• The Memory Analysis Challenge
• Results: 2 new tools

– Memparser reconstructs a process list and
extracts information from a process
memory (Chris Betz)

– Kntlist interprets structures of memory
(George M. Garner Jr. and Robert Jan Mora)

Related work

• Memparser by Chris Betz
– Enumerates processes

(PsActiveProcessList)
– Dumps process memory to disk
– Dumps process strings to disk
– Displays Process Environment Information
– Displays all DLLs loaded by process

Related work

• Kntlist by George M. Garner Jr. and Robert Jan Mora
– Copies, compresses, creates checksums & sends a physical

memory to a remote location
– Enumerates processes (PsActiveProcessList)
– Enumerates handle table
– Enumerates driver objects (PsLoadedModuleList)
– Enumerates network information such as interface list, arp

list, address object and TCB table
– References are examined to find hidden data

• Object table, its members and objects inside object directory
point to processes and threads

• Enumerates contents of IDT, GDT and SST to identify loaded
modules

Preparation

• Useful files (acquired from a file system):
– Kernel image file
– Drivers/modules
– Configuration files (i.e. SAM file, boot.ini)

• These files must be trusted
– File Hash Databases can be used to compare hash

sums

• Map of Symbols
– System.map file
– Some symbols are exported by core operating

system files

Terminology

• Data – content of objects (data block | page
frame)

• Metadata – provides details about any given
object (i.e. internal data structures)

kd> dt _EPROCESS 8932cda0
 +0x000 Pcb : _KPROCESS
 +0x06c ProcessLock : _EX_PUSH_LOCK
 +0x070 CreateTime : _LARGE_INTEGER 0x1c60ac5`b38bb370
 +0x078 ExitTime : _LARGE_INTEGER 0x0
 +0x080 RundownProtect : _EX_RUNDOWN_REF
 +0x084 UniqueProcessId : 0x00000b00
 +0x088 ActiveProcessLinks : _LIST_ENTRY [0x89267e28 - 0x89a7bc20]

...

Methods of analysis

• String searches – extracting strings from images
– ASCII & UNICODE

• Signature matching – identifying memory mapped
objects by using fingerprints (e.g. file headers, .text
sections)

• Interpreting internal kernel structures
– This is a very easy task on systems with the source code
– Analysis against Microsoft Windows systems is more

challenging
• For example: Windows NT family
• Symbols from MS web site + Livekd from Sysinternals are to

find some addresses (we have to be sure that a version of
operating systems are the same)

• Enumerating & correlating all page frames

Windows memory analysis

• Information about the analyzed memory dump
– The size of a page = 0x1000 bytes
– Physical Address Extension (PAE)
– Architecture 32-bit/64-bit/IA-64

• Memory layout
– Virtual Address Space/Physical Address Space
– User/Kernel land (2GB/2GB by default)

• Kernel offset at 0x80000000
– The PFN Database at 0x80c00000
– The PTE Base at 0xC0000000
– Page directory – each process has only one PD

• Knowledge about internal structures is required

Virtual To Physical
Address Translation

PTE address = PTE_BASE + (page directory index) * PAGE_SIZE

+ (page table index) * PTE size

Important kernel structures
• EPROCESS (executive process) block
• KPROCESS (kernel process) block
• ETHREAD (executive thread) block
• ACCESS_TOKEN & SIDs
• PEB (process environment) block
• VAD (virtual address descriptor)
• Handle table
• PFN (Page Frame Number Entries) & PFN

Database
• Page frames

– PTE_BASE, PAGE_DIRECTORY & PAGE_TABLES

Relations between structures

Identifying core addresses

• Finding physical address (PA) of memory mapped kernel
– Kernel image file: ntoskrnl.exe
– Portable Executable (PE) file format
– Base Address (typically 0x00400000)
– Kernel offset = 0x80000000 (VA)
– ntoskrnl.exe – first module on PsLoadedModuleList

• MODULE_ENTRY object
– 0x0 -> LIST_ENTRY module_list_entry;
– 0x18 -> DWORD driver_start;
– 0x30 -> DWORD UNICODE_STRING driver_name;

• Extracting the „ntoskrnl.exe” string from the image
• Base Address and Kernel Image Address are used to

calculate various addresses

Identifying core addresses

• VA (0x81965404) = PA (0x1D65404)
• driver_start (VA) = 0x804DE000
• Kernel image is loaded at (PA)

0x004DE000

Enumerating processes

• Debug section in the ntoskrnl.exe file
stores the PsInitialSystemProcess
symbol

• PsInitialSystemProcess = 0x4DE000 +
0x90EF4 (RVA) = (PA) 0x56EEF4

• 0x56EEF4 -> _EPROCESS (System)

Doubly Linked List

• EPROCESS
• MODULE_ENTRY
• etc

Processes’ details

• SID of process owner inside
ACCESS_TOKEN

• CreationTime in EPROCESS
– KeQuerySystemTime is called to save the

Process’s Create Time
– System time is a count of 100-nanosecond

intervals since January 1, 1601. This value
is computed for the GMT time zone.

Dumping memory mapped files

• Data Section Control Area
• Page Tables

• PFN * 0x1000 (Page size) = Physical Address
• Page Table entries contain index numbers to

swapped-out pages when the last-significant bit is
cleared
 Index number * 0x1000 = swapped-out page frame

• Example:
 dd.exe if=c:\memorydump.img of=page4C41 bs=4096

count=1 skip=19521 (0x4C41)

String searches

• Any tool for searching of ANSI and
UNICODE strings in binary images
– Example: Strings from Sysinternals or

WinHex
• Identifying process which includes

suspicious content
– Finding PFN of Page Table which points to

page frame which stores the string
– Finding Page Directory which points to PFN

of Page Table

Linux memory analysis

• Information about the analyzed memory image
– The size of a page = 0x1000 bytes
– The total size of the physical memory < 896 MB
– Architecture 32-bit/64-bit/multi-threading support

• Memory layout
– Virtual Address Space/Physical Address Space
– User/Kernel land (3GB/1GB by default)

• Kernel offset (PAGE_OFFSET) at 0xc0000000

– ZONES
– Memory map array 0xc1000030

• Knowledge about internal structures is required

Zones and Memory Map array

• Physical memory is partitioned into 3
zones:
– ZONE_DMA = 16 MB
– ZONE_NORMAL = 896 MB – 16 MB
– ZONE_HIGHMEM > 896 MB

• The mem_map array at 0xC1000030
(VA)

Important kernel structures

• task_struct structure
• mm_struct structure
• vm_area_struct structure
• inode & dentry structures
• address_space structure
• Page descriptor structure
• mem_map array
• Page frames

– PAGE DIRECTORY, PAGE MIDDLE DIRECTORIES &
PAGE TABLES

Relations
between
structures

Enumerating processes

• init_task_union (process number 0)
– The address is exported by a kernel image file
– The address is available in the System.map file

• init_task_union struct contains list_head
structure

• All processes (task_structs) are linked by a
doubly linked list

• Virtual To Physical Address Translation
VA – PAGE_OFFSET = PA

Dumping memory mapped files
(e.g. process image)

• Many Incident Response Toolkits use the
ptrace() function to dump a process memory

• Ptrace() based tools: memfetch, pcat, gdb,
memgrep, etc…

• Each process may be only attached by one
parent process

• Simple LKM:
...
task_lock (current);
current->ptrace=1;
task_unlock(current);

 ...

Examples:
[root@linux]# ./memgrep -p 9111 -d -a text -l 100
ptrace(ATTACH): Operation not permitted
memgrep_initialize(): Couldn't open medium device.
[root@linux bin]# ./pcat 9111
./pcat: ptrace PTRACE_ATTACH: Operation not permitted

Dumping memory mapped files
(e.g. process image)

• An address_space struct points to all page descriptors
• Page descriptor

– 0x0 –> list_head struct //doubly linked list
– 0x8 –> mapping //pointer to an address_space
– 0x14 –> count //number of page frames
– 0x34 –> virtual //physical page frame

0x010abfd8: 0xc1074278 0xc29e9528 0xc29e9528 0x00000001
0x010abfe8: 0xc1059c48 0x00000003 0x010400cc 0xc1095e04
0x010abff8: 0xc10473fc 0x03549124 0x00000099 0xc1279fa4

0x010ac008: 0xc3a7a300 0xc3123000 (virtual - 0xc0000000) = PA
• Flags to reduce results (e.g. VM_READ, VM_EXEC, VM_EXECUTABLE)

– a vm_flags field
 dd if=memorydump.img of=page3123 bs=1 count=4096 skip=51523584

address_space
next page descriptor

Finding „terminated” files
(e.g. process image)

• Enumerating all page frames
– 0x01000030 (PA)

• Fields of page descriptors are not cleared completely
– a mapping field points to an address_space struct
– a list_head field contains pointers to related page descriptors

• Useful information from an address_space struct
– an i_mmap field is cleared
– all linked page frames (clean, dirty and locked pages)
– a host field points to an inode structure which, in turn,

points to a dirent structure

Correlation with Swap Space
(swap space and memory analysis)
• A mm_struct contains a pointer to the Page Global

Directory (the pgd field)
• The Page Global Directory includes the addresses of

several Page Middle Directories
• Page Middle Directories include the addresses of

several Page Tables
• Page Table entries contain index numbers to

swapped-out pages when the last-significant bit is
cleared

• The first page (index 0) of the swap space is
reserved for the swap header
 (Index number x 0x1000) + 0x1000 = swapped-out page

frame

Memory analysis of a live system

• Analysis of physical memory on a live system
can be used to detect system compromises

• Reading kernel structures directly
– Defeating all methods based on hijacking system

calls and on modifying various tables (e.g. IDT,
SDT)

– But some functions (i.e. sys_read()) can be
hooked or cheated

• Example: Shadow Walker, the FU rootkit component, is
used to defeat virtual memory scanners

– Moreover, Direct Kernel Object Manipulation
(DKOM) technique defeats a method of reading
internal kernel structures directly

Finding objects hidden by DKOM

• Methods
– Reading internal kernel structures which are not

modified by rootkits
• For example, instead of reading the list of linked

EPROCESS blocks, PsActiveProcessList, we read lists of
kernel threads

– Correlating data from page frames
• Elegant method of detecting hidden data

• 2 examples
– Detecting hidden processes on Windows
– Detecting hidden processes on Linux

Windows hidden processes
detection

• We enumerate all linked EPROCESS blocks and store
addresses of each EPROCESS block

• Next, we enumerate all entries in the PFN database
and read two fields:
– Forward link – linked page frames
– PTE address – virtual address of the PTE that points to this

page

• PTE address is in system address space and is equal
to 0xC0300C00 (VA)

• Forward link points to the address of EPROCESS
block

• Finally, diff-based method is used to compare a result
with the doubly linked list of EPROCESS blocks

Linux hidden processes detection

• We enumerate all linked task_struct structures and store
addresses of each mm_struct

• Each User Mode process has only one memory descriptor
• Next, we enumerate all page descriptors and select only page

frames with memory mapped executable files (the
VM_EXECUTABLE flag)

• Relations:
– The mapping filed of a page descriptor points to the address_space

struct
– The i_mmap field of an address_space structure points to a

vm_area_struct
– The vm_mm field of a vm_area_struct points to memory descriptor

• Diff-based method is used to compare results

Integrity checks
(file system and memory analysis)
• Verifying integrity of memory dump (important OS

elements)
– values stored in internal kernel tables (e.g. SCT)
– code sections (read-only)

• kernel image file from file system
• other important system files from file system

• Example: kcore dump against vmlinux kernel image
(from FS)

#gdb vmlinux kcore.image
 (gdb) disass sys_read

Dump of assembler code for function sys_read:

0xc013fb70 <sys_read>: mov
$0xc88ab0a6,%ecx

0xc013fb73 <sys_read+3>: jmp *%ecx

0xc013fb77 <sys_read+7>: mov %esi,0x1c(%esp,1)

...

#gdb vmlinx
 (gdb) disass sys_read

Dump of assembler code for function sys_read:

0xc013fb70 <sys_read>: sub $0x28,%esp

0xc013fb73 <sys_read+3>: mov
0x2c(%esp,1),%eax

0xc013fb77 <sys_read+7>: mov %esi,0x1c(%esp,1)

...

Conclusions

• Memory analysis as an integral part of
Forensic Analysis

• Evidence found in a physical memory can be
used to reconstruct crimes:
– Temporal (when)
– Relational (who, what, where)
– Functional (how)

• Must be used to defeat anti-forensic
techniques

• Can be useful in detecting system
compromises on a live system

References

• Daniel P. Bovet, Marco Cesati „Understanding the Linux Kernel,
2nd Edition”

• Mark E. Russinovich, David A. Solomon, „Microsoft Windows
Internals, Fourth Edition: Microsoft Windows 2003, Windows XP,
and Windows 2000”

• Documents & tools at http://forensic.seccure.net

DEMO

Q & A

