o flexilis

Undermining the Linux Kernel:
Malicious Code Injection via /dev/mem

Anthony Lineberry
anthony.lineberry@gmail.com

Black Hat Europe 2009

o flexil

IS Overview

* What is a rootkit?

 Why is protection difficult?

* Current protection mechanisms/bypasses
* Injection via /dev/mem

* Fun things to do once you’re in

* Proposed solutions

o flexilis

Part |

Rootkit?

/d flexilis What is a rootkit?

* Way to maintain access (regain “root” after
successful exploitation)

* Hide files, processes, etc

e Control activity
—File 1/0
—Network

e Keystroke Logger

o flexilis Types of rootkits

* User-Land (Ring 3)
—Trojaned Binaries (oldest trick in the book)

* Binary patching
e Source code modification

—Process Injection/Thread Injection
* PTRACE_ATTACH, SIGNAL injection

—Does not affect stability of system

o flexilis Types of rootkits

e Kernel-Land (Ring 0)
—Kernel Modules/Drivers

—Hot Patching memory directly! (we’ll get to that ;)

o flexil

ﬁo

Part |l

Why are rootkits hard to defend
against?

o flexilis Why so hard?

* Can control most everything in the system
—System Calls cant be trusted
—Network traffic
—Can possibly detect if you are trying to detect it

o flexilis Why so hard?

* Most modern rootkits live in the kernel

e Kernel is God

—Impractical to check EVERYTHING inside kernel
* Speed hits

—Built in security can be circumvented by more

kernel code (if an attacker can get code in, game
over)

o flexilis

Part |l

Current Rootkit Defense

o flexil

IS Current Defense

* Checking Tables in kernel (sys_call table, IDT,
etc)
—Compares tables against known good

—Can be bypassed by creating duplicate table to use
rather than modifying the main table

—Typical security cat and mouse game

o flexil

IS Current Defense

* Hashes/Code Signing

—In kernel

* Hash critical sections of code
* Require sighed kernel modules

—In userland

* Hashes of system binaries
— Tripwire, etc

* Signed binaries

* File System Integrity

o flexil

IS Current Defense

* Non-Modularity

—Main suggested end all way to stop kernel space
rootkits (obviously this is a fail)

—/dev/kmem was previously used in a similar

fashion, but read/write access has since been
closed off in kernel mainline

o flexilis

Part IV

Code Injection via /dev/mem

o flexilis What is /dev/mem?

e /dev/mem
—Driver interface to physically addressable memory.

—Iseek() to offset in “file” = offset in physical mem
* EG: Offset 0x100000 = Physical Address 0x100000

—Reads/Writes like a regular character device

e Who needs this?

—X Server (Video Memory & Control Registers)
—DOSEmu

o Flexdilis Hijacking the kernel

Kernel addressing is virtual. How do we translate
to physical addresses?

/d flexilis Address Translation

* Find a Page Table Directory (stored in cr3
register)

—Pros:
* Guaranteed to be able to locate any physical page
» Mitigates page allocation randomization situations
 Allows us to find physical pages of process user space

/d flexilis Address Translation

* Find a Page Table Directory (stored in cr3
register)

—Cons:
* Finding one is easier said than done

* Heuristic could be developed for locating PTD in task
struct, but there are easier ways.

o flexilis

* Higher half GD’

 Bootloader tric

Address Translation

" loading concept applies

< to use Virtual Addresses along

with GDT in un

orotected mode to resolve

physical addresses.

—Kernel usually

loaded at 0x100000 (1MB) in

physical memory
—Mapped to 0xC0100000 (3GB+1MB) Virtually

/d flexilis Address Translation

0x40000000 GDT Base Address
l ,
OxC0100000 Kernel Virtual Address

| :

0Ox00100000 Physical Address

i O

ﬁﬂ@x s Address Translation

* Obviously over thinking that...

* No need to wrap around 32bit address, just
subtract.

—0xC0100000 — 0xC0000000 = 0x100000

* |f page allocation randomization existed, this
trick would not be possible

o flexilis Hijacking the kernel

#define KERN_START 0xC0000000
int read_virt(unsigned long addr, void *buf, unsigned int Ten)
{
if(addr < KERN_START)
return -1;
/* addr is now physical address */
addr -= KERN_START;

1seek(memfd, addr, SEEK_START);

return read(memfd, buf, len);

/O flexilis Useful structures

* Determine offset to important structures
—IDT

—sys_call_table
—kmalloc()

* Where are they?

o flexilis IDT

* Interrupt Descriptor Table (IDT)
—Table of interrupt handlers/call gates

—0x80’th handler entry = Syscall Interrupt

 What can we do with it?
—Replace Interrupt Handlers

 Hardware: Network Cards, Disks, etc
 Software: System Calls,

o flexilis IDTR

* IDTR holds structure with address of IDT
—Get/Set IDTR with LIDT/SIDT assembly instructions

—Unlike LIDT instruction, SIDT is not protected and
can be executed from user space to get IDT
address.

—Wont work in most VM’s

* Hypervisors return bogus IDT address

o flexilis IDTR

IDTR Structure

Base Address (4 btyes) Limit (2 bytes)

struct {
uint32_t base;
uintle_t Timit;
} didtr;

_asm__(“sidt %07 : “=m”(idtr));

o flexilis IDT Entry

IDT Entry (8 bytes)

0 16 31

Low 16bits of Handler Address Code Segment Selector

Flags High 16bits of Handler Address

o flexilis DT

IDT

< idtr.base

o flexilis DT

< idtr.base

Entry for < idtr.base + (0x80 * 8)

Syscall Interrupt

o flexil

IDT

12
GI—7_JDO

idtr.base

Entry for

Syscall Interrupt

idtr.oase + (0x80 * 8)

system_call()

L gg—

IDT

o flexilis System Calls

e system_call() — Main entry point for system
calls

* sys_call table — Array of function pointers
—sys_read(), sys_write(), etc

o flexilis System Calls

* Syscall Number stored in EAX register

* Opcode for instruction:
FF 14 85 7?7 727 727 77

—Read in memory at system_call(), search for byte

sequence “\xFF\x14\x85”. Next 4 following bytes
are address of sys_call_table!

o Flexdilis Hijacking the kernel

* Now we can:
—Find IDT
—Find system_call() handler function
—Use simple heuristic to find address of
sys_call_table

* What now?
—Overwrite system calls with our own code!

o Flexdilis Hijacking the kernel

* Where do we put our code?
—Kernel Memory Pool

* Traverse malloc headers looking for free blocks
* Not atomic operation, cant guarantee we’ll beat kernel

—Certain “guard pages” in kernel

—Allocate space in the kernel

* We can locate __kmalloc() inside the kernel and call
that

o Flexdilis Hijacking the kernel

* Finding __kmalloc()

—Use heuristics
push GFP_KERNEL
push SIZE
call __kmalloc

—Find kernel symbol table

 Search for “\O__kmalloc\0” in memory

* Find reference to address of above sequence then
subtract 4 bytes from location

o Flexdilis Hijacking the kernel

* How can we allocate kernel memory from
userspace?
—Locate address of __kmalloc() in kernel space

—Overwrite a system call with code to call
__kmalloc()

—Call system call

—Someone else could potentially call the same
system call and cause system instability

o flexilis

sys call table

Function Clobbering

sys_uname()

Backup Buffer

__NR _uname

___kmalloc stub

push $0xD0 ;GFP_KERNEL
push $0x1000 ; 4k

mov 0xc0123456, %ecx
call %ecx

ret

o flexilis

sys call table

Function Clobbering

sys_uname()

Backup Buffer

__NR _uname

100 bytes

___kmalloc stub

push $0xD0 ;GFP_KERNEL
push $0x1000 ; 4k

mov 0xc0123456, %ecx
call %ecx

ret

o flexilis

sys call table

Function Clobbering

sys_uname()

Backup Buffer

__NR _uname

100 bytes

___kmalloc stub

push $0xD0 ;GFP_KERNEL
push $0x1000 ; 4k

mov 0xc0123456, %ecx
call %ecx

ret

o flexilis Function Clobbering

sys_call_table sys_uname() Backup Buffer

__kmalloc stub 100 bytes

__NR uname

o Flexdilis Hijacking the kernel

e Call sys uname()
unsigned long kernel_buf;
asm__(“mov $122, %%eax \n”
“int $0x80 \n”
“mov %%eax, %0

“=r” (kernel_buf));

* Address of buffer allocated in kernel space
returned by syscall in EAX register

o flexilis

Part V

Fun things to do inside the kernel

o Flexdilis Hijacking the kernel

* Recap:
—read/write anywhere in memory with /dev/mem
—sys_call_table
—Kernel allocation capabilities
—Time to have fun!

o Flexdilis Hijacking the kernel

e What can we do?

—Use our kernel buffers we allocated to store raw
executable code.

—Overwrite function pointers in kernel with address
of our allocated buffers
* sys_call table entries, page fault handler code

—Setup code to use Debug registers to “hook”
system call table

o Flexdilis Hijacking the kernel

 What can we do with our injected code?
—Anything most other rootkits can do.

* Hide files, processes, etc
* Control network activity

* Limitations
—All injected code must usually be handwritten

assembly

—Some structures/functions can be difficult to
locate in memory

o flexilis

Part V

Solutions/Mitigation

o flexil

IS Solutions

* Why does a legitimate user process need
access to read anything from above 16k in
physical memory?

—SELinux has created a patch to address this
problem (RHEL and Fedora kernels are safe)

—Modifies mem driver to disallow Iseeks past 16k

£7 rlexilis Solutions

Mainline kernel has addressed this as of 2.6.26!

/d rlexilis Solutions

Mainline kernel has addressed this as of 2.6.26!

Sort of...

o flexil

IS Solutions

e Added functions in kernel

—range_is_alloc()
* Checks each page in range of address space being
accessed

—devmem _is_allowed()

 Called by range_is_allowed()
e Checks if address is within first 256 pages (1MB)

o flexil

IS Solutions

* So what’s the problem?
—range_is_allowed() always returns true if
CONFIG_STRICT _DEVMEM is turned off.

e Kernel defaults disables STRICT_DEVMEM by
default

—Even though it suggests saying “Y” if you are
unsure...

o flexilis

Questions?

