
Iron Chef:
John Henry Challenge

Sean Fay
Jacob West

Brian Chess
Pravir Chandra

Black Hat
3/27/2008
Amsterdam

Concept

• We love Iron Chef.
• We can’t cook.

Concept

• Compare tools and manual code review in head-to-
head “bake off”

• Rules:
• 45 minutes to find vulnerabilities in the same program
• Chef with tools can only use tools he has written
• Secret ingredient: the code!
• Present results to a panel of celebrity judges

• Judging:
• Quality of findings
• Originality
• Presentation

Bug
Hunting

First Chef
Presents

Second Chef
Presents

Chefs

Name: Pravir Chandra
Specialty: Manual code review

Job: Principle, Cigital

Chefs

Name: Sean Fay
Specialty: Static and runtime analysis

Job: Chief Architect, Fortify Software

Sean Fay

Chefs

Chefs

Chefs

• After judging, you point out
bugs these guys missed

Judges

TBA

TBA

TBA

Secret Ingredient

Name:
Version:

Language:
Size:

Home:
Overview:

< start >

Black Hat
3/27/2008
Amsterdam

Runtime Analysis

Dynamic Taint Propagation

• Follow untrusted data and identify points where
they are misused

Example: SQL Injection

...
user = request.getParameter("user");
try {
sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";
stmt.executeQuery(sql);
}
...

Tracking Taint

1. Associate taint marker with untrusted input as it
enters the program

2. Propagate markers when string
values are copied or concatenated

3. Report vulnerabilities when tainted strings are
passed to sensitive sinks

Java: Foundation

• Add taint storage to java.lang.String

Length Body

Length Taint Body

Java: Foundation

• StringBuilder and StringBuffer propagate
taint markers appropriately

Tainted Tainted+ = Tainted

Untainted + = TaintedTainted

Untainted + = UntaintedUntainted

Java: Sources

• Instrument methods that introduce input to set
taint markers, such as:
• HttpServletRequest.getParameter()
• PreparedStatement.executeQuery()
• FileReader.read()
• System.getenv()
• ...

Java: Sinks

• Instrument sensitive methods to check for taint
marker before executing, such as:
• Statement.executeQuery()
• JspWriter.print()
• new File()
• Runtime.exec()
• ...

Example: SQL Injection

user = request.getParameter("user");

try {
sql = "SELECT * FROM users " +

"WHERE id='" + user + "'";

stmt.executeQuery(sql);
}

TaintUtil.setTaint(user, 1);

TaintUtil.setTaint(sql,user.getTaint());
TaintUtil.checkTaint(sql);

Results Overview

Security Coverage

SQL Injection Issue

Source

Sink

Severity Category URL

Critical SQL Injection
/splc/listMyItems.do

Class Line
com.order.splc.ItemService

196
Query Stack Trace

select * from item where
item name = ‘adam‘ and
...

java.lang.Throwable at
StackTrace$FirstNested$SecondNested.

<init>(StackTrace.java:267) at
StackTrace$FirstNested.

<init>(StackTrace.java:256) at StackTrace.
<init>(StackTrace.java:246) at StackTrace.

main(StackTrace.java:70)

Where is the Problem?

Instrumentation

• Instrument JRE classes once
• Two ways to instrument program:

• Compile-time
• Rewrite the program's class files on disk

• Runtime
• Augment class loader to rewrite program

Aspect-Oriented Programming

• Express cross-cutting concerns independently
from logic (aspects)

• Open source frameworks
• AspectJ (Java)
• AspectDNG (.NET)

• Could build home-brew instrumentation on
top of bytecode library (BCEL, ASM)

Example

public aspect SQLInjectionCore extends ... {
//Statement
pointcut sqlInjectionStatement(String sql):
(call(ResultSet Statement+.executeQuery(String))
&& args(sql))
...

}

Instrument Inside or Outside?

• Inside function body
• Lower instrumentation cost

• Outside function call
• Lower runtime cost / better reporting

Types of Taint

• Track distinct sources of untrusted input
• Report XSS on data from the Web or database, but not

from the file system

• Distinguish between different sources when
reporting vulnerabilities
• Prioritize remotely exploitable vulnerabilites

Java: Foundation – Round 2

• Add taint storage and source information to
java.lang.String storage

Length Taint

Length Taint Source Body

Body

Writing Rules

• Identifying the right methods is critical
• Missing just one source or sink can be fatal

• Leverage experience from static analysis
• Knowledge of security-relevant APIs

Black Hat
3/27/2008
Amsterdam

Static Analysis

Prehistoric static analysis tools

Flawfinder

ITS4

RATS

(+) Good
• Help security experts audit code
• Repository for known-bad coding practices

(-) Bad
• NOT BUG FINDERS
• Not helpful without security expertise

Flawfinder

ITS4

RATS

Prehistoric static analysis tools

Advanced Static Analysis Tools: Prioritization

int main(int argc, char* argv[]) {
char buf1[1024];
char buf2[1024];
char* shortString = "a short string";
strcpy(buf1, shortString); /* eh. */
strcpy(buf2, argv[0]); /* !!! */
...

}

Static Analysis Is Good For Security

• Fast compared to manual review
• Fast compared to testing
• Complete, consistent coverage
• Brings security knowledge with it
• Makes security review process

easier for non-experts
• Useful for all kinds of code, not just

Web applications

What You Won’t Find

• Architecture errors
• Microscope vs. telescope

• Bugs you’re not looking for
• Bug categories must be predefined

• System administration mistakes
• User mistakes

Under the Hood

Building a Model

• Front end looks a lot like a compiler
• Language support
• One language/compiler is straightforward
• Lots of combinations is harder

• Could analyze compiled code…
• Everybody has the binary
• No need to guess how the compiler works
• No need for rules

• …but
• Decompilation can be difficult
• Loss of context hurts. A lot.
• Remediation requires mapping back to source anyway

Capacity: Scope vs. Performance

Only Two Ways to Go Wrong

• False positives
• Incomplete/inaccurate model
• Missing rules
• Conservative analysis

• False negatives
• Incomplete/inaccurate

model
• Missing rules
• “Forgiving” analysis

The tool that
cried “wolf!”

Missing a
detail can kill.

Developer Auditor

• Specify
• Security properties
• Behavior of library code

• Three rules to detect the command injection vulnerability
1) getInputFromNetwork() postcondition:

return value is tainted
2) copyBuffer(arg1, arg2) postcondition:

arg1 array values set to arg2 array values
3) exec(arg) precondition:

arg must not be tainted

Rules: Dataflow

buff = getInputFromNetwork();
copyBuffer(newBuff, buff);
exec(newBuff);

Rules: Control Flow

• Look for dangerous sequences
• Example: Double-free vulnerability

free(x)

free(x)

initial
state

error

start

(other
operations)

(other
operations)

while ((node = *ref) != NULL) {
*ref = node->next;
free(node);
if (!unchain(ref)) {

break;
}

}
if (node != 0) {

free(node);
return UNCHAIN_FAIL;

}

freed

Rules: Control Flow

• Look for dangerous sequences
• Example: Double-free vulnerability

while ((node = *ref) != NULL) {
*ref = node->next;
free(node);
if (!unchain(ref)) {

break;
}

}
if (node != 0) {

free(node);
return UNCHAIN_FAIL;

}

free(x)

free(x)

initial
state

error

start

(other
operations)

(other
operations)

freed

Rules: Control Flow

• Look for dangerous sequences
• Example: Double-free vulnerability

while ((node = *ref) != NULL) {
*ref = node->next;
free(node);
if (!unchain(ref)) {

break;
}

}
if (node != 0) {

free(node);
return UNCHAIN_FAIL;

}

free(x)

free(x)

initial
state

error

start

(other
operations)

(other
operations)

freed

• Must convince programmer that there’s a bug in the code
• Different interfaces for different scenarios:

• Security auditor parachutes in to 2M LOC
• Programmer reviews own code
• Programmers share code review

responsibilities
• Interface is just as important as analysis
• Don’t show same bad result twice
• Try this at home: Java Open Review

http://opensource.fortify.com

OK

Your Code
Sucks.

Displaying Results

Bad interface

Interface

Iron Chef:
John Henry Challenge

Sean Fay
Jacob West

Brian Chess
Pravir Chandra

Black Hat
3/27/2008
Amsterdam

	Iron Chef:�John Henry Challenge
	Concept
	Concept
	Chefs
	Chefs
	Sean Fay
	Chefs
	Chefs
	Chefs
	Judges
	Secret Ingredient
	< start >
	Runtime Analysis
	Dynamic Taint Propagation
	Example: SQL Injection
	Tracking Taint
	Java: Foundation
	Java: Foundation
	Java: Sources
	Java: Sinks
	Example: SQL Injection
	Results Overview
	Security Coverage
	SQL Injection Issue
	Source
	Sink
	Where is the Problem?
	Instrumentation
	Aspect-Oriented Programming
	Example
	Instrument Inside or Outside?
	Types of Taint
	Java: Foundation – Round 2
	Writing Rules
	Static Analysis
	Prehistoric static analysis tools
	Prehistoric static analysis tools
	Advanced Static Analysis Tools: Prioritization
	Static Analysis Is Good For Security
	What You Won’t Find
	Under the Hood
	Building a Model
	Capacity: Scope vs. Performance
	Only Two Ways to Go Wrong
	Rules: Dataflow
	Rules: Control Flow
	Rules: Control Flow
	Rules: Control Flow
	Displaying Results
	Interface
	Iron Chef:�John Henry Challenge

