Iron Chef:

Brian Chess Sean Fay
Pravir Chandra Jacob West

Black Hat
3/27/2008
Amsterdam

Concept

e We love Iron Chef.
e \We can’t cook.

Concept

e Compare tools and manual code review in head-to-
head “bake off”

e Rules:

e 45 minutes to find vulnerabilities in the same program
e Chef with tools can only use tools he has written
e Secret ingredient: the code!

e Present results to a panel of celebrity judges

e Judging:

Bug Second Chef
e Quality of findings Hunting Presents
- Originality 1
e Presentation First Chef

Presents

Chefs

Name: Pravir Chandra
Specialty: Manual code review
Job: Principle, Cigital

Chefs

Name: Sean Fay
Specialty: Static and runtime analysis
Job: Chief Architect, Fortify Software

Sean Fay

Chefs

Chefs

Chefs

e After judging, you point out
bugs these guys missed

Judges

TBA

TBA

TBA

Secret Ingredient

Name:
Version:
Language:
Size:
Home:
Overview:

< start =

\\

Runtime Analysis

Black Hat
3/27/2008
Amsterdam

Dynamic Taint Propagation

e Follow untrusted data and identify points where
they are misused

Example: SQL Injection

user = request.getParameter(''user');

try {

sql = "SELECT * FROM users " +
“"WHERE 1d=""" + user + "'"'';

stmt.executeQuery(sqgl);

}

Tracking Taint

1. Associate taint marker with untrusted input as it
enters the program

2. Propagate markers when string
values are copied or concatenated

3. Report vulnerabllities when tainted strings are
passed to sensitive sinks

Java: Foundation

e Add taint storage to java. lang.String

Java: Foundation

e StringBuilder and StringBuffer propagate
taint markers appropriately

Untainted + Untainted = Untainted

Untainted + Tainted = Tainted

Tainted + Tainted = Tainted

Java: Sources

e Instrument methods that introduce input to set
taint markers, such as:
e HttpServiletRequest.getParameter()

e PreparedStatement.executeQuery()
e FileReader.read()
= System.getenv()

Java: Sinks

e Instrument sensitive methods to check for taint
marker before executing, such as:
e Statement.executeQuery()

e JspWriter.print()
e new File()
e Runtime.exec()

Example: SQL Injection

user = request.getParameter(“user™);

TaintUtil _setTaint(user, 1);
try {

sql = "SELECT * FROM users " +
"WHERE 1d="" + user + """';

TaintUtil .setTaint(sgl ,user.getTaint());
TaintUtil.checkTaint(sqgl);

stmt.executeQuery(sal);
}

Results Overview

Current Run Clear Pause New Run Export to Fortif
Manager

Name: Random Status: In Progress

Security Issues

Issues by Severity

High Medium Laow

Security Coverage

Edit View
All Entry Poin /5)
Web Entry Points(2/2)

All End Points(4/6)

) Events File:
Import
Confias Import Events

Issues by Category

Unhandled E:

Browse...

Security Coverage

Security Coverage

Edit View

All Entry Points(3/5)

Web Entry Points(2/2)
All End Points(4/6)

40.0% Miss
0.0% Miss

S L =17 [
33.3% Miss

SQL Injection Issue

Run is SPLC:Random ~

Category is SQL Injection

View/Edit Application View Options

Displaying 1 out of 12 events. Change all displayed events:

Suppress ALL
Group By: | Entry Point File *| submit =

Unsuppress ALL
Expand All Collapse All

total
Category Entry Point Type End Point Type
SQL Injection Web Database

Entry Point File
org.apache.coyote.tomcat5.CoyoteRequestFacade: 295

. I Audit Verified .
Entry Point Method End Point File URL Status Status Details

String[] splc.ltemService:
org.apache.coyote.tomcat5.CoyoteRequest.getParameterValues(String) 201

Under

/sple/listMyltems.do \
. Review

Source

SOL Injection : Detected a SQL Injection issue where external taint reached a database sink

URL: http:/ /localhost/sple/listMyltems.do

Entry Point: Web Input

File: org.apache.coyote.tomcat5.CoyoteRequestFacade: 295

Method: String|[]
org.apache.coyote.tomcat5.CoyoteRequest.getParameterValues(String)

Method
Arguments: » bean.quantity

End Point: Database

File: com.order.splc.ltemService: 201
Method: ResultSet java.sgl.Statement.executeQuery(String)

Trigger: Method Argument
Value:

select id, account, sku, guantity, price, ccno, description fro

Where is the Problem?

URLE
/splc/listMyltems.do

Ipne

196

com.order.splc.ltemService

QUENY Stack: lirace

jJava.lang.Throwable at
* - StackTrace$FirstNested$SecondNested.
select from item where <init>(StackTrace.java:267) at
item name = “adam“ and StackTrace$FirstNested.
<init>(StackTrace. java:256) at StackTrace.
<init>(StackTrace. java:246) at StackTrace.
main(StackTrace. java:70)

Instrumentation

e |Instrument JRE classes once

e Two ways to Iinstrument program:
e Compile-time
e Rewrite the program's class files on disk
e Runtime
e Augment class loader to rewrite program

Aspect-Oriented Programming

e EXpress cross-cutting concerns independently
from logic (aspects)
e Open source frameworks
e Aspect] (Java)
e AspectDNG (.NET)

e Could build home-brew instrumentation on
top of bytecode library (BCEL, ASM)

Example

public aspect SQLInjectionCore extends ... {
//Statement
pointcut sgllnjectionStatement(String sqgl):

(call (ResultSet Statement+.executeQuery(String))
&& args(sqgl))

Instrument Inside or Outside?

e Inside function body
e Lower instrumentation cost

e Qutside function call
e Lower runtime cost / better reporting

Types of Taint

e Track distinct sources of untrusted input

e Report XSS on data from the Web or database, but not
from the file system

e Distinguish between different sources when
reporting vulnerabilities

e Prioritize remotely exploitable vulnerabilites

Java: Foundation — Round 2

e Add taint storage and source information to
jJava. lang.String storage

Writing Rules

e |ldentifying the right methods is critical
e Missing just one source or sink can be fatal

e Leverage experience from static analysis
e Knowledge of security-relevant APIs

\\

Static Analysis

Black Hat
3/27/2008
Amsterdam

Prehistoric static analysis tools

Flawfinder

Prehistoric static analysis tools

(+) Good

e Help security experts audit code

e Repository for known-bad coding practices
(-) Bad

e NOT BUG FINDERS

e Not helpful without security expertise

Advanced Static Analysis Tools: Prioritization

int main(int argc, char* argv|[]) {
char bufl[1024];
char buf2[1024];
char* shortString = "a short string";
strcpy(bufl, shortString); /7* eh. */
strcpy(buf2, argv|[0]); /* 111 >/

Static Analysis Is Good For Security

e Fast compared to manual review
e Fast compared to testing

e Complete, consistent coverage

e Brings security knowledge with it

e Makes security review process
easier for non-experts

e Useful for all kinds of code, not just
Web applications

-aﬁofTwAﬂE"Ecuklrr RIES

Y S
y Gary McGraw

SECURE

PROGRAMMING
WITH

STATIC ANALYSIS

Brian Chess ® Jacob West

What You Won't Find

e Architecture errors
e Microscope vs. telescope

e Bugs you’re not looking for
e Bug categories must be predefined

e System administration mistakes
e User mistakes

Under the Hood

Source e
Code > Q > ﬂ'@ﬂ' s

Build Perform Present
Model Analysis Results
Security

Knowledge

Building a Model

e Front end looks a lot like a compller
e Language support
e One language/compiler is straightforward
e Lots of combinations is harder

e Could analyze compiled code...
e Everybody has the binary
 No need to guess how the compiler works
e No need for rules

e ...but
e Decompilation can be difficult
e Loss of context hurts. A lot.
e Remediation requires mapping back to source anyway

Capacity: Scope vs. Performance

Klocwork Fortify

Qvernight ® o
QOunce
E Coverity
; FindBugs ®
k=, Coffee break
5
2
a
i o
Blink of an eye n M3lanalyze
ITS4 Flawfinder
RATS
Line Function Module Program

Analysis Scope

Only Two Ways to Go Wrong

e False positives

e Incomplete/inaccurate model

e Missing rules
e Conservative analysis

e False negatives

e Incomplete/inaccurate
model

e Missing rules
e “Forgiving” analysis

Developer

The tool that
cried “wolf!”

Missing a
detail can Kkill.

Rules: Dataflow

e Specify
e Security properties
e Behavior of library code

buff = getlnputFromNetwork();
copyBuffer(newBuff, buff);
exec(newBuff);

e Three rules to detect the command injection vulnerability
1) getlnputFromNetwork() postcondition:
return value i1s tainted
2) copyBuffer(argl, arg2) postcondition:
argl array values set to arg2 array values
3) exec(arg) precondition:
arg must not be tainted

Rules: Control Flow

e Look for dangerous sequences
e Example: Double-free vulnerability

initial
state

while ((node = *ref) = NULL) {
*ref = node->next; (other
operations) *free €9
free(node);
IT (Yunchain(ref)) {
break;

}

} (other
iT (node = 0) { operations) free(x)

free(node);
return UNCHAIN_ FAIL;

}

Rules: Control Flow

e Look for dangerous sequences
e Example: Double-free vulnerability

initial
state

while ((node = *ref) = NULL) {

*ref = node->next; (other
operations) *free(x)
free(node);
IT (tunchain(ref)) {
< break;
}
(} (other
iT (node = 0) { operations) free(x)

free(node);
return UNCHAIN_ FAIL;

}

Rules: Control Flow

e Look for dangerous sequences
e Example: Double-free vulnerability

initial
state

while ((node = *ref) = NULL) {

*ref = node->next; (other
operations) *free(x)
free(node);
IT (tunchain(ref)) {
< break;
}
(} (other
iIT (node = 0) { operations) free(x)
ot

return’ UNCHAIN_FAIL;
}

Displaying Results

e Must convince programmer that there’s a bug in the code

e Different interfaces for different scenarios:
e Security auditor parachutes in to 2M LOC

Your Code

e Programmer reviews own code ke,

e Programmers share code review
responsibilities
e Interface is just as important as analysis
e Don’t show same bad result twice

e Try this at home: Java Open Review
http://opensource.fortify.com Bad interface >

Interface

[Fortify Audit Workbench
File Edit

Tools Ophions Help

L

Diagram
BackDoars java: 235)
| BackDoors makelsermamen) | | ParameterParser getRawP arameter]) | | ParameterParser getRawParameter]) |
C\._I getRawParameterdreturn) ?12_:} I"E E

Y

@ﬂ getRawParameterireturn) ?n:}:}

G:-ﬂ getParametervalues{returm

EQD} =]

If_:: [azsignment to values)

520)

C@ﬂ [return values)]

704)

C:: return

G:-f‘,l [assignment to userinput]

728)

If_\._l [assignment to formattedinput]

?251:)

(Cel) Divi)

IIIIIIIIIIIIIIIIIIIIIIIIIXI

IIIIIIIIIIIIIIIXI

!EIED zink

Iron Chef:

Brian Chess Sean Fay
Pravir Chandra Jacob West

Black Hat
3/27/2008
Amsterdam

	Iron Chef:�John Henry Challenge
	Concept
	Concept
	Chefs
	Chefs
	Sean Fay
	Chefs
	Chefs
	Chefs
	Judges
	Secret Ingredient
	< start >
	Runtime Analysis
	Dynamic Taint Propagation
	Example: SQL Injection
	Tracking Taint
	Java: Foundation
	Java: Foundation
	Java: Sources
	Java: Sinks
	Example: SQL Injection
	Results Overview
	Security Coverage
	SQL Injection Issue
	Source
	Sink
	Where is the Problem?
	Instrumentation
	Aspect-Oriented Programming
	Example
	Instrument Inside or Outside?
	Types of Taint
	Java: Foundation – Round 2
	Writing Rules
	Static Analysis
	Prehistoric static analysis tools
	Prehistoric static analysis tools
	Advanced Static Analysis Tools: Prioritization
	Static Analysis Is Good For Security
	What You Won’t Find
	Under the Hood
	Building a Model
	Capacity: Scope vs. Performance
	Only Two Ways to Go Wrong
	Rules: Dataflow
	Rules: Control Flow
	Rules: Control Flow
	Rules: Control Flow
	Displaying Results
	Interface
	Iron Chef:�John Henry Challenge

