Bryan Sullivan
Senior Security Program Manager
Microsoft

AGILE SECURITY; or,

HOW TO DEFEND APPLICATIONS
WITH FIVE-DAY RELEASE
CYCLES

What does “Agile” mean,
anyway?

www.geldenrice.org

The Agile Manifesto

Individuals and
Interactions

Working software

Customer
collaboration

Responding to change

Processes and
tools

Comprehensive
documentation

Contract
negotiation

Following a plan

Security Development Lifecycle

The SDL: Microsoft’s industry leading software security assurance

process designed to protect customers by reducing the number
and severity of software vulnerabilities before release.

A

.. S —
Training Requirements Design Implementation Verification Release

e Core training e Define quality e Attack surface e Specify tools e Dynamic/Fuzz e Response plan
gates/bug bar analysis e Enforce banned testing e Final security
e Analyze security e Threat modeling functions o Verify threat review

and privacy risk e Static analysis models/attack e Release archive
surface

I 1 1 11

J \ J
Y Y l

Education Process

Ongoing Process Improvements

Challenges: Adapting SDL to
Agile
lterative nature of Agile

Projects may never end
Just-in-time planning/YAGNI mentality

General avoidance of project artifacts
Emphasis on project/iteration backlogs
General avoidance of automated tools

Challenges: Adapting SDL to
Agile
lterative nature of Agile

Projects may never end
Just-in-time planning/YAGNI mentality

General avoidance of project artifacts
Emphasis on project/iteration backlogs
General avoidance of automated tools

Security Development Lifecycle

e Core training o Define quality e Attack surface » Specify tools e Dynamic/Fuzz e Response plan
gates/bug bar analysis e Enforce banned testing e Final security
e Analyze security e Threat modeling functions o \erify threat review
and privacy risk » Static analysis models/attack

e Release archive
surface
|l i | 1 J | 1 |

Training Requirements Design Implementation Verification Release »
® Response

SDL “Classic” phased approach
Fits spiral or waterfall...
...but Agile doesn’'t have phases

ldea: Move SDL to product backlog

Very Agile...
...but not secure

ldea: Do the full SDL every iteration

Very secure...
...but not Agile!

Iterative nature of Agile

From the Principles Behind the Agile
Manifesto:

“Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference to the shorter
timescale.”

ldea: Drop some requirements

But every requirement is, well,
required

Need to keep all requirements

Need to reorganize into Agile-
friendly form

SDL-Agile process

Training

s Core training

One-time
Requirements

- |

Reguirements Design Implementation > Verification

» Define quality s Aftack surface & Specify tools & [ynamic/Fuzz
gates/bug bar analysis s Enforce banned testing
» Analyze security I » Threat modeling functions s Verify threat
and privacy risk » Static analysis models/attack
surface

{‘;ﬂ’}- Design
Review

Verification g
Tasks E&?’A

Response
Planning
S1t
d
Gu«’a_i_j'ﬂbaxd luuds-—i(\

& Response plan

» Final security
FEVIEW

* Release archive

Three classes of requirements

Training

Threat

| modeling

tracking

compilers

['B'Gcket }

Fuzz
parsers |

Create
response
plan

elc. ..

Requirements as backlog items

One-time
requirements get up g system

added to the » Upgrade to VS2010
Product Backlog « Fuzz image parser

(with deadlines) * Fuzz network parser
So do bucket

requirements [Sprint Backlob J

Every-sprint Threat model new stored
requirements go to procedures |
the Sprint Backlog e Run static analysis

directly "o

Agile sashimi

At the end of
every sprint:
All every-sprint

requirements
complete

No bucket items
more than six
months old

No expired one-time o
requirements

NO Open Secunty dinner.wordpress.com
bugs over the
bugbar

=

Important

(U
(

Moderate

A
[

Low

« EoP: Remote Anonymous
» Info Disc: HBI/PII

e EoP: Local Anonymous
 D0oS: Asymmetric Persistent

* Info Disc: LBI
e D0S: Temporary

e Info Disc: Random memory

Challenges: Adapting SDL to
Agile
lterative nature of Agile

Projects may never end
Just-in-time planning/YAGNI

mentality

General avoidance of project artifacts
Emphasis on project/iteration backlogs
General avoidance of automated tools

Security Incident Response

Because 2:00 AM Christmas morning IS
a poor time to hold a Scrum meeting...

Challenges: Adapting SDL to
Agile
lterative nature of Agile

Projects may never end
Just-in-time planning/YAGNI mentality

General avoidance of project artifacts
Emphasis on project/iteration backlogs
General avoidance of automated tools

Security bug tracking

Must track bug cause

Buffer overflow
XSS
Etc

And effect
STRIDE

Important for bugbar criteria

Threat modeling

“The cornerstone of the SDL”

Data Flow Diagrams (DFDs)
STRIDE/element
Mitigations
Assumptions
External dependencies

Sidebar: Exception workflow

b
ewiz\

s
//// Level 4 \\\\
y. AN

Level 5

Challenges: Adapting SDL to
Agile
lterative nature of Agile

Projects may never end
Just-in-time planning/YAGNI mentality

General avoidance of project artifacts

Emphasis on project/iteration
backlogs

General avoidance of automated tools

Writing secure code

10% Writing Security
Features E—.

Cryptography
Firewalls \ —
ACLSs

S 5006 Writing Secure

Features
Overflow defense
Input validation
Output-encoding

Secure code does not featurize

WA ™Vl Pl
 ama rF Y€y 1YY @ |
[§F B & BB B 8O ®»
| §® 2O ¥ xR ® |
T R A2N7g 11 3

2 J % = v 2N 92
el WS Wi w1
I\N\lHH\HMMMHH\HHHHHH\HH\H\H\HHHHHH\HH\H\H\HHHHHH\HH\H\H\HHH\HHHHH\H\H\HHH\HHHHH\H\H\HHH\HHHHH\H\H\H\H\H\H\HWH!H!H!HiHiM

]

I R A R R

| [G A

U\l‘ i il I I I

- = 3 F "8 HHH HF | .y - |
B L] HHHHHHHH g ®» = @@ @000 OO @

... ...~~~

.]
N\N\vHv\\v\\v\\N\vHh\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\\h\\\‘\\\‘H\‘\H‘\H‘\H‘HMWWW
00 0 0 0 60 6

w"w"w"w"w"w"w"w"‘;"";"";‘:::;::::;::::;::::;::::;::::}::::}::::;::::;::::;::::;::::;::::;"";"";"";"‘WWw(»%/

Taskifying the SDL

Some are straightforward...
Enable compiler switches
Run static analysis tools

...some are tougher (not actionable)
Avoid banned APIs
Access databases safely

Two strategies

www.sondheim.com www.dow.com

Verify these things by hand (alone or in pairs)
Verify these things with tools

Challenges: Adapting SDL to
Agile
lterative nature of Agile

Projects may never end
Just-in-time planning/YAGNI mentality

General avoidance of project artifacts
Emphasis on project/iteration backlogs

General avoidance of automated
tools

Static analysis requirements

FxCop

CAT.NET

PREFast (/analyze)

And/or your alternative tool(s) of choice

These are “every-sprint” requirements
Better still: Continuous Integration

Dynamic analysis requirements

Fuzzers (homegrown)
File parsers
RPC interfaces

ActiveX controls
COM objects

AppVerifier
Passive HTTP traffic analysis
And/or your alternative tool(s) of choice

These are “bucket” requirements
Or CI...

Secure coding libraries

AntiXss/Web Protection Library
StrSafe
Safelnt

Use always, check every sprint

<opinion>

This Is the future of the SDL

</opinion>

Strengths: Adapting SDL to
Agile

Bucket activities easily move in & out of
sprints
Teams self-select best security activities

SDL versioning is simpler and more
current

Each iteration is a gate

Strengths: Adapting SDL to
Agile
Bucket activities easily move in & out of
sprints
Teams self-select best security activities
SDL versioning is simpler and more current
Each iteration is a gate

“Welcome changing requirements, even late
In development. Agile processes harness
change for the customer’s competitive
advantage.”

Strengths: Adapting SDL to
Agile
Bucket activities easily move in & out of
sprints
Teams self-select best security
activities
SDL versioning is simpler and more current
Each iteration Is a gate

“At regular intervals, the team reflects on how
to become more effective, then tunes and
adjusts its behavior accordingly.”

Strengths: Adapting SDL to
Agile

Bucket activities easily move in & out of
sprints
Teams self-select best security activities

SDL versioning Iis simpler and more
current

Each iteration is a gate

SDL-Agile “versioning”

SDL-Classic SDL-Aqile

Updated yearly Updated at any

Grandfather time
clause Automatic

updating

Strengths: Adapting SDL to
Agile

Bucket activities easily move in & out of
sprints
Teams self-select best security activities

SDL versioning is simpler and more
current

Each iteration Is a gate

Each iteration Is a gate

“Security and privacy are most effective when
‘built-in’ throughout the entire development
lifecycle”

“Security Is most effective when it is ‘baked-in’
from the start”

This fits Agile perfectly

The Agile Manifesto

Individuals and
Interactions

Working software

Customer
collaboration

Responding to change

Processes and
tools

Comprehensive
documentation

Contract
negotiation

Following a plan

The SDL-Agile Manifesto

Continuous, Heroic pushes
Incremental effort

Automated tasks Manual
processes

Planned incident
response Ad-hoc response

More Resources

My alias: bryansul

Microsoft

Your potential. Our passion.

2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S:and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respondto changing market conditions, it should
not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation:#MICROSOFT MAKES NO WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

