


Who Am I?

 Peter Silberman
 Researcher/Developer at MANDIANT on the product

team
 Co-Wrote (Proof of Concepts) RAIDE and FUTo
 Co-Developed “Advanced Memory Forensics in

Incident Response”
 Wrote Audit Viewer
 Contributor to the Uninformed Journal
 Security Researcher:

 Found flaws in: CA, Windows, AVG, ZoneAlarm, Kaspersky,
Kerio



Talk Overview

 What is snorting memory
 Concepts critical to snorting memory

 Accessing/using physical memory
 Enumerating Strings

 Snort signatures

 Discuss Snorting Memory
 Identify malware before it goes over the wire
 New tool MindSniffer

 Theory Mets Reality – DEMO and tool release



What is Snorting Memory?

 Snorting Memory: “the ability to apply a snort
signature to a processes’ enumerated strings.”

 Two step process:
1. Translate snort signatures:

 MindSniffer

2. Use Memoryze to enumerate each processes’
strings.
 Snort XPath filter to strings being found in memory

OR
 Load XML results into Audit Viewer, apply snort signatures



Snort My Memory: Critical Concepts

 Need to understand how to access memory
 Access memory for two purposes

 Live Analysis
 Dumping Memory

 Virtual to physical address translation
 Note: Signatures work on live/dead memory



Accessing Physical Memory

 \Device\PhysicalMemory
 Section object exposed by Windows

 Reading from the handle allows application to read
physical memory



Translating Virtual to Physical

 Memoryze implements its own virtual to physical
address translation:
 Every virtual address needs to be translated to a

physical address within the section object
 Non PAE:

 PAE:
Virtual Address

Page Directory Index (512) Page Table Index (512) Byte Index (4096)

9 bits 12 bits9 bits2 bits



Accessing Physical Memory

 Map physical memory into buffer
 Write the buffer or parse the buffer

 Scan buffer for some characteristic (Live Analysis)
 Write buffer to dump (Offline)

 Problem: User-mode access is not allowed beginning
in Windows 2003 SP1 http://technet.microsoft.com/en-
us/library/cc787565.aspx



Physical Memory

 Reading physical memory benefits:
 Allows reading of process memory without debugging

 Defeats anti debugging techniques
 Gives a very complete picture of binaries that are packed

(even themida)
 Bypasses rootkits using dr register technique

 http://www.invisiblethings.org/papers/chameleon_concepts.pdf



Enumerating Strings

 Find every process in physical memory:
 Processes are represented as EPROCESS blocks in the kernel

 Parse EPROCESS’ memory sections:
 The VadRoot within the EPROCESS

 Tree of MMVAD entries
 MMVAD entries contain the virtual start address and size of

each memory section within a process
 Entries can represent heap, stack, binary images
 Helps manages process’ virtual address space

 Scan from virtual start -> virtual end
 Convert unicode strings containing US ascii characters to ASCII

strings



VAD Structure

 lkd> dt nt!_MMVAD
    +0x000 StartingVpn          : Uint4B
    +0x004 EndingVpn           : Uint4B
    +0x008 Parent                   : Ptr32 _MMVAD
    +0x00c LeftChild               : Ptr32 _MMVAD
    +0x010 RightChild            : Ptr32 _MMVAD
    +0x014 u                             : __unnamed
    +0x018 ControlArea          : Ptr32 _CONTROL_AREA
    +0x01c FirstPrototypePte    : Ptr32 _MMPTE
    +0x020 LastContiguousPte : Ptr32 _MMPTE
    +0x024 u2                            : __unnamed



Enumerating Strings

 OllyDbg’s memory map view shows different
sections

 Each address range is:
 An entry in VadRoot, represented by MMVAD

structure



Enumerating Strings

 Safe assumption: VAD tree has not been
modified?
 Tests showed modifying/removing a VAD will result in

the operating system blue screening



Snort My Memory

 What is snort?
 Snort open source Intrusion Detection System (IDS)
 Widely deployed and used
 Applies signatures and rules to network traffic

Only one more slide on snort



Advantages to Using Snort

 Public signature/rule repository
 Community maintains and updates signatures:

 http://www.emergingthreats.net

 Signatures range from policy violation, to shellcode
detection
 Most of these signatures have application in memory

 Very active community



           My Memory

 Review:
 Snort signatures applied to strings in memory

 Problem snorting memory is solving:
 Quick identification of potential infection

 REMEMBER: Nothing found DOES NOT mean
nothings there



Snort My Memory

 Why do snort signatures work in memory:
 Snort identifies network indicators

 Indicators generated (usually) by processes
 Socket API requires strings in memory

 Identifying strings in a process’ memory space
 Applying a given signature is very similar to how snort works

 Potential for earlier identification



Snort My Memory

 Reasons why applying snort signatures in
memory works:
 Executables can contain strings in their .data section
 Strings that are freed are still in memory (no garbage

collection, and no zeroing of strings)
 Malicious executables are not system files

 Memoryze, can parse the paging file ensuring high
percentage of data



Snort My Memory

 What snort in memory can identify:
 Malware signatures

 Optix Pro
 Gimmiv
 Waledac

 (ASCII) Payloads
 Metasploit

 Policy violations
 Lots of “secret” strings in unencrypted memory

 Passwords anyone?



Snort My Memory

 Benefits of applying snort signatures to memory:
 Using snorts signature set, we get continually updated

signatures
 Commercially available signatures should? have the

potential to be used in memory
 Dormant malware
 Malware is mostly taking a file system up view, and

not a memory down view.
 Hide files, registry keys not strings



Snort My Memory

 Potential problems snorting memory:
 Strings in dynamic memory (stack or heap) may not stay around along

enough to be hit by a signature
 Timing is crucial

 Partial signatures
 Only ASCII characters (0x20-0x7E) can be used in signatures
 Malware encrypting strings and zeroing them out after use
 Some signatures will not be in memory.
 Dead memory



MindSniffer



MindSniffer
http://www.mandiant.com/software/mms.htm

 Purpose
 Translation from snort signature -> usable memory

format

 MindSniffer:
 python utility used in conjunction with Memoryze and

or Audit Viewer.
 What is Memoryze
 What is Audit Viewer



MindSniffer

 MindSniffer generates:
 An XML file that Memoryze understands and runs.

The XML file will have an XPath filter in it that
represents the parsed snort signature.
OR

 A python file that Audit Viewer loads and can apply to
the result of some audit previously performed.



MindSniffer.py

 MindSniffer takes the following parameters:
 -r  - input to parse
 -x - generate signatures as separate xpath audits
 -p  - generate python files to be used by audit viewer
 -o - output the files to a directory
 -n             - specify or in xpath filter generation
 -m            - specify memory image to be used in xpath filter



Memoryze
http://www.mandiant.com/software/memoryze.htm

 Memoryze
 Will acquire memory dumps
 List loaded drivers (including attached devices)
 Enumerates within all processes

 The handle table
 The memory sections
 The open ports
 The strings

 Detected dll injection
 Acquire processes and drivers
 Detect kernel hooks
 When analyzing live memory, Memoryze will utilize the paging file to get a better

picture of memory
 Suports Windows 2000-2003, BETA support for Vista all 32 bit at the moment



Free Tool: Audit Viewer
http://www.mandiant.com/software/mav.htm

 Audit Viewer allows the user to quickly view complex
XML output in an easily readable format. Using familiar
grouping of data and search capabilities, Audit Viewer
makes memory analysis quicker and more intuitive.
 Ability to search Files, Processes, Mutants, Events, Registry Keys, and

Strings using plain text or regex.
 Ability to load multiple Memoryze result sets contained in the same

directory.
 Handle types are separated out into more abstract types representing

the logical type of the handle such as Files, Directories (part of the
Object Manager’s namespace), Processes, Keys, Mutants, and Events.

 And More http://blog.mandiant.com/archives/50



Snort Signatures vs. Translated
Signatures
 Snort applies AND logic

 content:"GET "; uricontent:"/postcard.exe“
 Audit Viewer uses OR
 Memoryze can use either
 OR, can result in higher false positives



MindSniffer generated XML file

 Snort Signature:
alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"ET TROJAN Gimmiv.A.dll Infection"; flow:
to_server,established; uricontent:"/test"; uricontent:".php";
uricontent:"?abc="; uricontent:"?def=";
reference:url,www.microsoft.com/security/portal/Entry.aspx?name=T
rojanSpy%3aWin32%2fGimmiv.A; classtype:trojan-activity;
sid:2008689; rev:2;)

 XPath Filter
<value xsi:type="xsd:string">//*[(contains(StringList, '/test') and

contains(StringList, '.php') and contains(StringList, '?abc=') and
contains(StringList, '?def='))]</value>



MindSniffer generated XML file

 Snort Signature:
   alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS

(msg:"ET TROJAN Hitpop.AG/Pophot.az HTTP Checkin";
flow:to_server,established; content:"GET "; depth:4;
uricontent:".asp"; nocase; uricontent:"|3F|ver="; nocase;
uricontent:"|26|tgid="; nocase; uricontent:"|26|address="; nocase;
pcre:"/address\=([0-9A-F][0-9A-F]-){5}([0-9A-F][0-9A-F])/i";
classtype:trojan-activity; sid:2008317; rev:2;)

 XPath Filter:
 <value xsi:type="xsd:string">//*[(contains(StringList, 'GET ') and

contains(StringList, '.asp') and contains(StringList, '?ver=') and
contains(StringList, '&tgid=') and contains(StringList, '&address=')
and matches(StringList, 'address\=([0-9A-F][0-9A-F]-){5}([0-9A-
F][0-9A-F])"'))]</value>



MindSniffer generated XML file

 Snort Signature:
     alert tcp $HOME_NET any -> $EXTERNAL_NET 1024: (msg:"ET

TROJAN Perfect Keylogger FTP Initial Install Log Upload (Null
obfuscated)"; flow:established,to_server;
content:"C|00|o|00|n|00|g|00|r|00|a|00|t|00|u|00|l|00|a|00|t|00|i|00|
o|00|n|00|s|00|!|00| |00|P|00|e|00|r|00|f|00|e|00|c|00|t|00|
|00|K|00|e|00|l|00|o|00|g|00|g|00|e|00|r|00| |00|w|00|a|00|s|00|
|00|s|00|u|00|c|00|c|00|e|00|s|00|s|00|f|00|u|00|l|00|l|00|y|00|
|00|i|00|n|00|s|00|t|00|a|00|l|00|l|00|e|00|d|00|"; classtype:trojan-
activity; sid:2008327; rev:1;)

 XPath Filter:
<value xsi:type="xsd:string">//*[(contains(StringList,
'Congratulations! Perfect Kelogger was successfully
installed'))]



MindSniffer generated XML file

 Snort Signature:
 alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"ET

CURRENT_EVENTS Possible XML 0-day for Internet Explorer Exploitation
Attempt (obfuscation 1)"; flow:established,from_server; content:"|7c|XML|7c
7c|if|7c|SPAN|7c|navigator|7c|CDATA|7c|http|7c|com|7c|w2k3|7c|appV
ersion|7c|version|7c|nt|7c
7c|X|7c|MSIE|7c|wxp|7c|114|7c|HTML|7c|DATAFLD|7c|DATASRC|7c|DA
TAFORMATAS|7c|ID|7c|while|7c|2003|7c|"; classtype:web-application-
attack; […]

 XPath Filter:
 <value xsi:type="xsd:string">//*[(contains(StringList,
'|XML||if|SPAN|navigator|CDATA|http|com|w2k3|appVersion|version|nt
||X|MSIE|wxp|114|HTML|DATAFLD|DATASRC|DATAFORMATAS|ID|whil
e|2003|'))]</value>



MindSniffer generated XML file
(caveat)
 alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS

(msg:"ET CURRENT_EVENTS Trojan resulting from Fake MS
Updates Email Login to CnC"; flow:established,to_server; content:"
HTTP/1.0|0d 0a|User-Agent|3a| Mozilla/4.0 (compatible\; MSIE
6.0\; Windows XP 2600.xpsp.9786-27197)|0d 0a|"; […]

 //*[(contains(StringList, ' HTTP/1.0') and contains(StringList, 'User-
Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows XP
2600.xpsp.9786-27197)'))]
 XML Sanitization results in \r \n being broken into separate elements.
 MindSniffer mimics this by breaking apart signatures



MindSniffer python module

 Audit Viewer now imports anything from
_Signatures\ directory

 Audit Viewer calls initialize for module which
registers the “plugin” with Audit Viewer

 Users can then apply signatures to processes



Future of MindSniffer

 Better parsing of snort rules
 Better generation of translated snort rules

 Utilize pcre flags

 More and More and More testing



Lessons learned

 Over the course of testing
 Snort - Variant specific signatures
 Memory – (potential) for generic malware signaturs

per variant
 “Optix Pro v1.33” exists 5 times in an infected processes

 Optix Pro v\d\.\d+



Conclusion

 This is a very small first step
 The future is very bright for writing memory

specific signatures
 There are a lot more signaturable strings in memory
 The future for snort signatures in memory is yet to be

determined.
 Gimmicky at best, not going to solve bad ass IR



Thanks

 Anne M
 Product Team
 Kelcey Tietjen
 Lurene Grenier
 Michael Sutton, and Shmoocon presenter for

twitter idea



DEMO

Theory Meets Reality



DEMO

 Generate Signatures
 Find Waledac
 Find Gimmiv (if time permits)



Waledac Signatures

 alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"ET TROJAN Waledac Beacon Traffic Detected";
flow:to_server,established; content:"POST /"; depth:6; content:"|0d
0a|Referer\: Mozilla|0d 0a|"; nocase; within:50; content:"|0d
0a|User-Agent\: Mozilla|0d 0a|"; within:120; content:"a="; nocase;
within: 100; classtype:trojan-
activity;reference:url,www.shadowserver.org/wiki/pmwiki.php?n=Cal
endar.20081231; sid:2008958; rev:1;)



Gimmiv Signature (Time??)

 alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS
(msg:"ET TROJAN Gimmiv.A.dll Infection"; flow:
to_server,established; uricontent:"/test"; uricontent:".php";
uricontent:"?abc="; uricontent:"?def=";
reference:url,www.microsoft.com/security/portal/Entry.aspx?name=T
rojanSpy%3aWin32%2fGimmiv.A; classtype:trojan-activity;
sid:2008689; rev:2;)



Questions??

 Contact:
peter.silberman@mandiant.com

 Blog:
http://blog.mandiant.com

 Files:
MindSniffer  - http://www.mandiant.com/software/mms.htm
Memoryze  - http://www.mandiant.com/software/memoryze.htm
Audit Viewer - http://www.mandiant.com/software/mav.htm


