
Preparing for the Cross Site Request
Forgery Defense

Chuck Willis
chuck.willis@mandiant.com

Black Hat DC 2008
February 20, 2008

1

About Me

� Principal Consultant with MANDIANT in
Alexandria, VA
• Full spectrum information security company:

� Commercial and Government Services
� Public and Private Training Courses
� Forensic and Incident Response Products

• Services include Application Security, Network
Security, Incident Response, Computer Forensics,
Research and Development

• Free Software releases include Red Curtain, Web
Historian, First Response

• Product available: MANDIANT Intelligent Response

2

Agenda

� Scenario
� What is Cross Site Request Forgery?
� How do CSRFs relate to investigations and

forensics?
� CSRF Case Studies and Live Demos
� Scope of CSRF Vulnerabilities
� How to detect or rule out CSRF during a forensic

exam
� How to detect and prevent CSRF in a web

application

Scenario

4

Scenario

� Examining a user’s computer for evidence of
“kitty” (as in cat) pornography and you find:
• Google searches for “kitty pr0n”
• Flikr searches for “kitty”
• Images in web cache of cats in compromising

positions
• Pages in the web cache and browser history for

sites like “www.kittyandme.com”

5

Scenario

� Continue looking and find more things (via the
cache or via a subpoena):
• Netflix queue has movies like:

� Garfield: A Tail of Two Kitties
� Hello Kitty's Paradise
� Cat on a Hot Tin Roof

• Posts to online forums describing “love” for cats

6

Scenario

� Question: Based on this evidence can you
determine that the user was actively seeking or
knowingly possessing cat porn?

� Answer: Not necessarily – all the evidence
above could have been placed by a web
application vulnerability known as Cross Site
Request Forgery (CSRF)

7

My Experience

� I have not seen use of Cross Site Request
Forgeries of the nature described in this
presentation during investigations

� However:
• It is possible that they are being used in some

cases in this way
• More importantly, this issue could be brought up

as part of a person’s defense

What is CSRF?

9

What's in a name?

� Cross Site Request Forgery (CSRF) is the most common
name for a web application security issue also known as:
• Cross Site Reference Forgery (CSRF)
• XSRF (similar to XSS acronym for Cross Site Scripting)
• "Sea Surf"
• Session Riding
• One-Click Attack (Microsoft's terminology)
• Hostile Linking
• A type of Confused Deputy attack

10

CSRF vs XSS

� Despite the similar sounding names, Cross Site
Request Forgeries (CSRF) and Cross Site
Scripting (XSS) refer to completely different
issues which require entirely different protection
mechanisms

11

CSRF Defined

� CSRF is an exploitation of the HTTP protocol's feature
that a web page can include HTML elements that will
cause the browser to make a request to any other web
site

� Like all HTTP transactions, the submission to the second
site will include the user’s session information (usually
cookies) if they have an established session

� Regardless of if the user has a session with the second
site, elements of the second site will be loaded in the
victim's browser and can appear in the cache and history

� CSRF can occur on either an HTTP GET or a POST

12

Simple GET CSRF In Action

5. Forced Request (with Cookies) to
http://target/app?param=v1&p2=v2…

4. Response with Request to Target
<iframe style="width:0px; height:0px; border:

0px" src="http://target/app?
param=v1&p2=v2">

User's
Web

Browser

Target Web
App (such as a
Web Forum)

Attacker's Web Site
(CSRF Host)

1. Login

3. Request

2. Set-Cookie…

13

GET CSRF

� The simplest way to create a GET request is with
an HTML Image tag, such as:
<img src="http://target/app?
param=v1&p2=v2">

� But, an image tag will only retrieve the specific
URL listed (not any referenced images, scripts,
etc) so another method is to use a "hidden inline
frame":
<iframe style="width:0px;
height:0px; border: 0px"
src="http://target/app?
param=v1&p2=v2">

14

Ways to force a GET request in HTML

� GET requests can be elicited using:
• Image:
• Script: <script src="">
• Link:
• Background Image
• Cascading Style Sheet
• Page Icon
• Frame (Inline or traditional)
• Prefetch Link
• Pop-Up / Pop-Under browser window
• Applet / Flash Code / ActiveX Control (<object>, <embed>

and/or <applet> tag)

15

Types of CSRF Hosts

� An attacker does not need to lure the victim to his or her
own web server to create a CSRF

� Other places to host a CSRF:
• Online Forum (often allow a user to link to an image as an

avatar or as an attachment)
• HTML Email
• Photo Gallery
• Wiki
• Blog
• Online Auctions and E-Commerce Sites
• …
• Pretty much any site that allows for posting anything like

HTML
� The CSRF could be hosted on the target server itself

16

Session Mechanisms

� Most web applications store session identifiers in
a cookie, which makes them vulnerable to CSRF

� Other session mechanisms are also vulnerable
to CSRF:
• HTTP Basic Authentication
• HTTP Digest Authentication
• Integrated Windows Authentication (NTLM or

Kerberos)

� Session tracking in the URL or query parameters
is not vulnerable to CSRF

17

CSRF on an Intranet

� One of the troubling aspects of CSRF is that the
attacker does not even need to be able to
access the target application

� All traffic to the application comes from the victim
user, so as long as he or she can access the
application, the CSRF can be performed

� CSRF can be particularly devastating against
Intranet applications:
• Often use Windows Integrated authentication - no

login required!
• Often have poor access controls and logging

18

CSRF on an Intranet

3. Forced Request (with
User's automatic
Authentication)

2. Response that will elicit
a Request to Target

User's Web
Browser

Target
Web App

Attacker's
Content

1. Request

INTRANET

Firewall

19

CSRFs in Investigations

� During investigations and forensics, we are
concerned with CSRF for two reasons:
• Server side state changes (the normal motivation

for preventing CSRF in web application security)
• Effects of CSRF on the client web browser and

the client's web traffic
� Causes sites to be visited without the user's

knowledge
� Causes items to be written into the user's web

cache
� Can cause URLs to be added to the browser history

(depends on circumstances and browser)

CSRF Case Studies

21

Netflix CSRF Case Study

� In September 2006, security researcher Dave
Ferguson notified Netflix of a variety of CSRF
issues with their site

� Dave publicly released information about the
issues in October 2006 after the most significant
issues were addressed

22

Netflix CSRF Case Study

� Like most Internet applications, Netflix uses
cookies to store session information

� Netflix used GET requests to handle pretty much
all its user input

� For example, the "Add" button to add a movie to
your rental queue was a simple link to a URL
like:

http://www.netflix.com/AddToQueue?
movieid=12345678

23

Messing with the Queue

� Dave recognized this fertile ground for CSRF
� He crafted HTML to add a movie to the user's

queue:
<img src = "http://www.netflix.com/

AddToQueue?movieid=12345678">

� He also recognized that he could move the
new movie to the top of the user's queue
(after a short delay in JavaScript):

<img src = "http://www.netflix.com/
MoveToTop?movieid=12345678
&fromq=true">

24

Netflix CSRF Unresolved

� As of February 2008 (17 months later), this issue
has not been resolved and Netflix users are still
vulnerable to CSRF in the form:

<img src = "http://www.netflix.com/
AddToQueue?movieid=12345678">

Netflix CSRF Demo

26

Netflix CSRF Unresolved

27

CSRF in Search Engines

� Search engine queries are almost always done
with GET requests

� This makes them easily vulnerable to GET
CSRF requests

28

CSRF in Google

� A normal Google search URL looks like:
http://www.google.com/search?hl=en&q=

cat+pics&btnG=Google+Search

� All that is need to execute a CSRF to Google is
the HTML:

<iframe style="width:0px; height:0px;
border: 0px"
src="http://www.google.com/search?hl
=en&q=cat+pics&btnG=Google+Search">

29

CSRF in Google

� A CSRF forced search to Google will:
• Show up in the user's cache
• Possibly show up in the user's web browser's

history
• In Firefox, cause first link to be pre-fetched and

added to the cache
• Show up in the user's search history if they have

enabled that feature with Google
• Probably be stored in Google's internal databases

Google CSRF Demo

Scope of CSRF Vulnerabilities

32

Scope of CSRF Vulnerabilities

"In fact, if you have not taken specific steps to
mitigate the risk of CSRF attacks, your
applications are most likely vulnerable."

- Chris Shiflett in 2004
http://shiflett.org/articles/cross-site-request-forgeries

33

Scope of CSRF Vulnerabilities

"No statistics, but the general consensus is just
about every piece of sensitive website
functionality is vulnerable [to Cross Site Request
Forgery]."

- Jeremiah Grossman and T.C. Niedzialkowski in 2006
http://www.whitehatsec.com/home/resources/
presentations/files/javascript_malware.pdf

34

Scope of CSRF Vulnerabilities

"Cross-Site Request Forgery (aka CSRF or
XSRF) is a dangerous vulnerability present in
just about every website."

- Jeremiah Grossman in 2006
http://jeremiahgrossman.blogspot.com/2006/09/csrf-
sleeping-giant.html

35

Scope of CSRF Vulnerabilities

"Cross site request forgery is not a new attack,
but is simple and devastating…."

"This vulnerability is extremely widespread…."
"All web application frameworks are vulnerable to
CSRF. "

- OWASP Top Ten 2007
http://www.owasp.org/index.php/Top_10_2007-A5

How to detect or rule out CSRF during an
investigation

37

How to detect or rule out CSRF

� Look for pages that forced the requests in the
cache
• Page(s) will not be in the cache if they have been

marked "no cache":
� By the server in HTTP headers
� In the HTML itself using <meta equiv> tags

• Some CSRF hosts will not allow the attacker to
control caching of the page(s)

• Be aware of encodings of the target URL and the
enclosing tag

38

URL Encodings / Obfuscation

� Parameters in a URL may be URL encoded:
http://www.google.com/search?%68%6C=%65%
6E&%71=%63%61%74%2B%70%69%63%73&
%62%74%6E%47=%47%6F%6F%67%6C%65
%2B%53%65%61%72%63%68

� Hostname in a URL may be replaced by IP
address in:
• Standard dotted format (64.233.169.103)
• DWord Format (1089055079)
• Hex Format (0x40.0xe9.0xa9.0x67)
• Octal Format (0100.0351.0251.0147)

39

HTML Tag Encodings / Obfuscation

� HTML tags may be encoded in a variety of
manners similar to a Cross Site Scripting attack

<iframe/randomtext ... >

<<<iframe ... >

<iframe ... >">

perl -e 'print "<ifr\0ame...>";'

<script>document.write(unescape('%3C%
69...%22%3E'));</script>

� See RSnake’s Cross Site Scripting (XSS) Cheat
Sheet at http://ha.ckers.org/xss.html

40

How to detect or rule out CSRF

� Look at the web browser's history
• URLs that have been forced by a CSRF (such as

in an IFRAME or an IMG tag) may not appear in
the browser history (depends on circumstances
and browser)

• Pages found on disk but not in the history could
be an indication of CSRF, but are more likely the
result either:
� Browser history and cache aging differently
� User clearing the history

41

How to detect or rule out CSRF

� Construct a timeline
• Most fruitful way to detect or rule out a Cross Site

Request Forgery is to construct a timeline of the
user’s activity

• Merge data from the web browser cache, web
browser history, and any other logs that you may
have (Proxy, IDS, Firewall, Web Server, etc)

• Examine items immediately before the activity in
question to determine if a CSRF may be involved

42

How to detect or rule out CSRF

� Look at the list of URLs that were typed into the
address bar of the browser
• This information cannot be forced
• Not all browsers record a list of URLs that were

typed into the browser
• Users will type in the URL for only a small

percentage of sites that they visit

43

How to detect or rule out CSRF

� Look at items in browser Favorites / Bookmarks
• This information cannot be forced
• Users will bookmark only a small percentage of

sites that they visit

44

How to detect or rule out CSRF

� Look for evidence outside of the web browser
cache
• For example, if you are interested in image files,

look for image files outside of the cache
(indicating that the user intentionally saved them)

• Will only find things that the user obtained from
non-web sources or that the user saved from a
web site

45

How to detect or rule out CSRF

� Determine if the application is vulnerable to CSRF
• This will only help in investigating a "traditional"

CSRF issue where a state change on the server
may have been forced

• There is no way that a web application can prevent
CSRFs that only aim to affect the local browser
cache and history

• If the relevant web page of application is not
vulnerable to CSRF, then the information in
question could not have been forced by a CSRF

• Next section will detail how to determine if a page
on a web application is vulnerable to CSRF

How to detect and prevent CSRF in a web
application

47

Identifying CSRF

� The key characteristics of a CSRF vulnerability
are:
• Application accepts a request that makes

something occur on the server
• Attacker can determine all the parameters of that

request for another user (typically in a CSRF the
parameters are fixed for all users)

48

How not to prevent CSRF

� There are suggestions sometimes made to
address CSRF that do not work:

� "Check referrer headers, if the referrer is not
from this domain, ignore the request"
• Referrer headers are not sent with all requests

depending on circumstances and the browser in
use

• Some users / browsers never send referrer
headers so they will not be able to access the app

49

How not to prevent CSRF

� "Use POST requests instead of GETs"
• CSRF with an HTTP POST request is only a tiny

bit harder than with an HTTP GET request

� "Limit the duration of sessions"
• This reduces the window of exposure for your

application to CSRF, but does not eliminate it
• Some applications want / need long sessions

50

Preventing CSRF

� CSRF cannot be directly prevented in that an
application cannot prevent other sites from
forcing users to make requests to the application

� CSRF only needs to be prevented in forms that
cause a state change in the application - there is
no need to worry about CSRF for GET requests
on a well designed application

� The key to preventing CSRF is for an application
to determine which requests are legitimate and
which have been forced by a CSRF before
acting on the request

51

Preventing CSRF

� In order to prevent CSRF, an additional
parameter must be added to a request, either on
the URL line parameters or in POST parameters

� This is implemented by adding the parameter to
a form as a hidden field or to the "action"
(location where the form submits)

� This parameter must not be something that the
attacker can determine so he or she cannot
construct a link or script to execute a CSRF

52

Preventing CSRF

� The most easiest parameter to use is the
session ID
• Using the session ID to prevent CSRF is

sometimes known as "Double Cookie Submission"
• There are some issues with reusing the session

ID for this purpose
• A better technique is to use a separate unique

identifier that is also tied to the user's session

Questions?

Chuck Willis
chuck.willis@mandiant.com

Preparing for the Cross Site Request
Forgery Defense

Chuck Willis
chuck.willis@mandiant.com

Black Hat DC 2008
February 20, 2008

