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About Me

� Principal Consultant with MANDIANT in 
Alexandria, VA
• Full spectrum information security company:

� Commercial and Government Services
� Public and Private Training Courses
� Forensic and Incident Response Products

• Services include Application Security, Network 
Security, Incident Response, Computer Forensics, 
Research and Development

• Free Software releases include Red Curtain, Web 
Historian, First Response

• Product available: MANDIANT Intelligent Response
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Agenda

� Scenario
� What is Cross Site Request Forgery?
� How do CSRFs relate to investigations and 

forensics?
� CSRF Case Studies and Live Demos
� Scope of CSRF Vulnerabilities
� How to detect or rule out CSRF during a forensic 

exam
� How to detect and prevent CSRF in a web 

application



Scenario
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Scenario

� Examining a user’s computer for evidence of 
“kitty” (as in cat) pornography and you find:
• Google searches for “kitty pr0n”
• Flikr searches for “kitty”
• Images in web cache of cats in compromising 

positions
• Pages in the web cache and browser history for 

sites like “www.kittyandme.com”
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Scenario

� Continue looking and find more things (via the 
cache or via a subpoena):
• Netflix queue has movies like:

� Garfield: A Tail of Two Kitties
� Hello Kitty's Paradise
� Cat on a Hot Tin Roof

• Posts to online forums describing “love” for cats
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Scenario

� Question: Based on this evidence can you 
determine that the user was actively seeking or 
knowingly possessing cat porn?

� Answer: Not necessarily – all the evidence 
above could have been placed by a web 
application vulnerability known as Cross Site 
Request Forgery (CSRF)
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My Experience

� I have not seen use of Cross Site Request 
Forgeries of the nature described in this 
presentation during investigations

� However:
• It is possible that they are being used in some 

cases in this way
• More importantly, this issue could be brought up 

as part of a person’s defense



What is CSRF?
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What's in a name?

� Cross Site Request Forgery (CSRF) is the most common 
name for a web application security issue also known as:
• Cross Site Reference Forgery (CSRF)
• XSRF (similar to XSS acronym for Cross Site Scripting)
• "Sea Surf"
• Session Riding
• One-Click Attack (Microsoft's terminology)
• Hostile Linking
• A type of Confused Deputy attack



10

CSRF vs XSS

� Despite the similar sounding names, Cross Site 
Request Forgeries (CSRF) and Cross Site 
Scripting (XSS) refer to completely different 
issues which require entirely different protection 
mechanisms
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CSRF Defined

� CSRF is an exploitation of the HTTP protocol's feature 
that a web page can include HTML elements that will 
cause the browser to make a request to any other web 
site

� Like all HTTP transactions, the submission to the second 
site will include the user’s session information (usually 
cookies) if they have an established session

� Regardless of if the user has a session with the second 
site, elements of the second site will be loaded in the 
victim's browser and can appear in the cache and history

� CSRF can occur on either an HTTP GET or a POST
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Simple GET CSRF In Action

5. Forced Request (with Cookies) to 
http://target/app?param=v1&p2=v2…

4. Response with Request to Target
<iframe style="width:0px; height:0px; border:

0px" src="http://target/app? 
param=v1&p2=v2"> 

User's 
Web 

Browser

Target Web 
App (such as a 
Web Forum)

Attacker's Web Site 
(CSRF Host)

1. Login

3. Request

2. Set-Cookie…
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GET CSRF

� The simplest way to create a GET request is with 
an HTML Image tag, such as:
<img src="http://target/app? 
param=v1&p2=v2"> 

� But, an image tag will only retrieve the specific 
URL listed (not any referenced images, scripts, 
etc) so another method is to use a "hidden inline 
frame":
<iframe style="width:0px; 
height:0px; border: 0px" 
src="http://target/app? 
param=v1&p2=v2"> 
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Ways to force a GET request in HTML

� GET requests can be elicited using:
• Image: <img src="">
• Script: <script src="">
• Link: <a href="">
• Background Image
• Cascading Style Sheet
• Page Icon
• Frame (Inline or traditional)
• Prefetch Link
• Pop-Up / Pop-Under browser window
• Applet / Flash Code / ActiveX Control (<object>, <embed> 

and/or <applet> tag)



15

Types of CSRF Hosts

� An attacker does not need to lure the victim to his or her 
own web server to create a CSRF

� Other places to host a CSRF:
• Online Forum (often allow a user to link to an image as an 

avatar or as an attachment)
• HTML Email
• Photo Gallery
• Wiki
• Blog
• Online Auctions and E-Commerce Sites
• …
• Pretty much any site that allows for posting anything like 

HTML 
� The CSRF could be hosted on the target server itself



16

Session Mechanisms

� Most web applications store session identifiers in 
a cookie, which makes them vulnerable to CSRF

� Other session mechanisms are also vulnerable 
to CSRF:
• HTTP Basic Authentication
• HTTP Digest Authentication
• Integrated Windows Authentication (NTLM or 

Kerberos)

� Session tracking in the URL or query parameters 
is not vulnerable to CSRF
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CSRF on an Intranet

� One of the troubling aspects of CSRF is that the 
attacker does not even need to be able to 
access the target application

� All traffic to the application comes from the victim 
user, so as long as he or she can access the 
application, the CSRF can be performed

� CSRF can be particularly devastating against 
Intranet applications:
• Often use Windows Integrated authentication - no 

login required!
• Often have poor access controls and logging
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CSRF on an Intranet

3. Forced Request (with 
User's automatic 
Authentication)

2. Response that will elicit 
a Request to Target

User's Web 
Browser

Target 
Web App

Attacker's 
Content

1. Request

INTRANET

Firewall
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CSRFs in Investigations

� During investigations and forensics, we are 
concerned with CSRF for two reasons:
• Server side state changes (the normal motivation 

for preventing CSRF in web application security)
• Effects of CSRF on the client web browser and 

the client's web traffic
� Causes sites to be visited without the user's 

knowledge
� Causes items to be written into the user's web 

cache
� Can cause URLs to be added to the browser history 

(depends on circumstances and browser)



CSRF Case Studies
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Netflix CSRF Case Study

� In September 2006, security researcher Dave 
Ferguson notified Netflix of a variety of CSRF 
issues with their site

� Dave publicly released information about the 
issues in October 2006 after the most significant 
issues were addressed
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Netflix CSRF Case Study

� Like most Internet applications, Netflix uses 
cookies to store session information

� Netflix used GET requests to handle pretty much 
all its user input 

� For example, the "Add" button to add a movie to 
your rental queue was a simple link to a URL 
like:

http://www.netflix.com/AddToQueue? 
movieid=12345678
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Messing with the Queue

� Dave recognized this fertile ground for CSRF
� He crafted HTML to add a movie to the user's 

queue:
<img src = "http://www.netflix.com/ 

AddToQueue?movieid=12345678">

� He also recognized that he could move the 
new movie to the top of the user's queue 
(after a short delay in JavaScript):

<img src = "http://www.netflix.com/ 
MoveToTop?movieid=12345678
&fromq=true">
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Netflix CSRF Unresolved

� As of February 2008 (17 months later), this issue 
has not been resolved and Netflix users are still 
vulnerable to  CSRF in the form:

<img src = "http://www.netflix.com/ 
AddToQueue?movieid=12345678">



Netflix CSRF Demo
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Netflix CSRF Unresolved
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CSRF in Search Engines

� Search engine queries are almost always done 
with GET requests

� This makes them easily vulnerable to GET 
CSRF requests
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CSRF in Google

� A normal Google search URL looks like:
http://www.google.com/search?hl=en&q=

cat+pics&btnG=Google+Search

� All that is need to execute a CSRF to Google is 
the HTML:

<iframe style="width:0px; height:0px; 
border: 0px" 
src="http://www.google.com/search?hl
=en&q=cat+pics&btnG=Google+Search">
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CSRF in Google

� A CSRF forced search to Google will:
• Show up in the user's cache
• Possibly show up in the user's web browser's 

history
• In Firefox, cause first link to be pre-fetched and 

added to the cache
• Show up in the user's search history if they have 

enabled that feature with Google
• Probably be stored in Google's internal databases



Google CSRF Demo



Scope of CSRF Vulnerabilities
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Scope of CSRF Vulnerabilities

"In fact, if you have not taken specific steps to 
mitigate the risk of CSRF attacks, your 
applications are most likely vulnerable."

- Chris Shiflett in 2004
http://shiflett.org/articles/cross-site-request-forgeries
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Scope of CSRF Vulnerabilities

"No statistics, but the general consensus is just 
about every piece of sensitive website 
functionality is vulnerable [to Cross Site Request 
Forgery]." 

- Jeremiah Grossman and T.C. Niedzialkowski in 2006 
http://www.whitehatsec.com/home/resources/
presentations/files/javascript_malware.pdf
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Scope of CSRF Vulnerabilities

"Cross-Site Request Forgery (aka CSRF or 
XSRF) is a dangerous vulnerability present in 
just about every website."

- Jeremiah Grossman in 2006
http://jeremiahgrossman.blogspot.com/2006/09/csrf-
sleeping-giant.html



35

Scope of CSRF Vulnerabilities

"Cross site request forgery is not a new attack, 
but is simple and devastating…."

"This vulnerability is extremely widespread…."
"All web application frameworks are vulnerable to 
CSRF. "

- OWASP Top Ten 2007
http://www.owasp.org/index.php/Top_10_2007-A5



How to detect or rule out CSRF during an 
investigation
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How to detect or rule out CSRF

� Look for pages that forced the requests in the 
cache 
• Page(s) will not be in the cache if they have been 

marked "no cache":
� By the server in HTTP headers
� In the HTML itself using <meta equiv> tags

• Some CSRF hosts will not allow the attacker to 
control caching of the page(s)

• Be aware of encodings of the target URL and the 
enclosing tag
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URL Encodings / Obfuscation

� Parameters in a URL may be URL encoded: 
http://www.google.com/search?%68%6C=%65%
6E&%71=%63%61%74%2B%70%69%63%73&
%62%74%6E%47=%47%6F%6F%67%6C%65
%2B%53%65%61%72%63%68

� Hostname in a URL may be replaced by IP 
address in:
• Standard dotted format (64.233.169.103)
• DWord Format (1089055079)
• Hex Format (0x40.0xe9.0xa9.0x67)
• Octal Format (0100.0351.0251.0147)
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HTML Tag Encodings / Obfuscation

� HTML tags may be encoded in a variety of 
manners similar to a Cross Site Scripting attack

<iframe/randomtext ... >

<<<iframe ... >

<IMG """><iframe ... >">

perl -e 'print "<ifr\0ame...>";'

<script>document.write(unescape('%3C%
69...%22%3E'));</script>

� See RSnake’s Cross Site Scripting (XSS) Cheat 
Sheet at http://ha.ckers.org/xss.html
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How to detect or rule out CSRF

� Look at the web browser's history
• URLs that have been forced by a CSRF (such as 

in an IFRAME or an IMG tag) may not appear in 
the browser history (depends on circumstances 
and browser)

• Pages found on disk but not in the history could 
be an indication of CSRF, but are more likely the 
result either:
� Browser history and cache aging differently
� User clearing the history
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How to detect or rule out CSRF

� Construct a timeline
• Most fruitful way to detect or rule out a Cross Site 

Request Forgery is to construct a timeline of the 
user’s activity

• Merge data from the web browser cache, web 
browser history, and any other logs that you may 
have (Proxy, IDS, Firewall, Web Server, etc)

• Examine items immediately before the activity in 
question to determine if a CSRF may be involved
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How to detect or rule out CSRF

� Look at the list of URLs that were typed into the 
address bar of the browser
• This information cannot be forced
• Not all browsers record a list of URLs that were 

typed into the browser
• Users will type in the URL for only a small 

percentage of sites that they visit
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How to detect or rule out CSRF

� Look at items in browser Favorites / Bookmarks
• This information cannot be forced
• Users will bookmark only a small percentage of 

sites that they visit
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How to detect or rule out CSRF

� Look for evidence outside of the web browser 
cache
• For example, if you are interested in image files, 

look for image files outside of the cache 
(indicating that the user intentionally saved them)

• Will only find things that the user obtained from 
non-web sources or that the user saved from a 
web site
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How to detect or rule out CSRF

� Determine if the application is vulnerable to CSRF
• This will only help in investigating a "traditional" 

CSRF issue where a state change on the server 
may have been forced 

• There is no way that a web application can prevent 
CSRFs that only aim to affect the local browser 
cache and history

• If the relevant web page of application is not 
vulnerable to CSRF, then the information in 
question could not have been forced by a CSRF

• Next section will detail how to determine if a page 
on a web application is vulnerable to CSRF



How to detect and prevent CSRF in a web 
application
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Identifying CSRF

� The key characteristics of a CSRF vulnerability 
are: 
• Application accepts a request that makes 

something occur on the server
• Attacker can determine all the parameters of that 

request for another user (typically in a CSRF the 
parameters are fixed for all users)
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How not to prevent CSRF

� There are suggestions sometimes made to 
address CSRF that do not work:

� "Check referrer headers, if the referrer is not 
from this domain, ignore the request"
• Referrer headers are not sent with all requests 

depending on circumstances and the browser in 
use

• Some users / browsers never send referrer 
headers so they will not be able to access the app
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How not to prevent CSRF

� "Use POST requests instead of GETs"
• CSRF with an HTTP POST request is only a tiny 

bit harder than with an HTTP GET request

� "Limit the duration of sessions"
• This reduces the window of exposure for your 

application to CSRF, but does not eliminate it
• Some applications want / need long sessions
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Preventing CSRF

� CSRF cannot be directly prevented in that an 
application cannot prevent other sites from 
forcing users to make requests to the application

� CSRF only needs to be prevented in forms that 
cause a state change in the application - there is 
no need to worry about CSRF for GET requests 
on a well designed application

� The key to preventing CSRF is for an application 
to determine which requests are legitimate and 
which have been forced by a CSRF before 
acting on the request
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Preventing CSRF

� In order to prevent CSRF, an additional 
parameter must be added to a request, either on 
the URL line parameters or in POST parameters

� This is implemented by adding the parameter to 
a form as a hidden field or to the "action" 
(location where the form submits)

� This parameter must not be something that the 
attacker can determine so he or she cannot 
construct a link or script to execute a CSRF
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Preventing CSRF

� The most easiest parameter to use is the 
session ID
• Using the session ID to prevent CSRF is 

sometimes known as "Double Cookie Submission"
• There are some issues with reusing the session 

ID for this purpose 
• A better technique is to use a separate unique 

identifier that is also tied to the user's session 



Questions?

Chuck Willis 
chuck.willis@mandiant.com
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