ACCUVANT LABS

Showcase Showdown
Browser Security Edition

Actionable Metrics for Web Browser Security

Shawp Moyer Ryan Smith
Practice Manager Chief Scientist

Hi, BlackHat.

Quick overview of browser security research
® Released in late 2011

® FEvaluated security of Internet Explorer 9, Chrome 12 & 13,
Firefox 5, on Windows 7 (32-bit)

Collaborative effort by the entire Labs R&D team:
® Drake, Mehta, Miller, Moyer, Smith, Valasek

Some key points and a nickel tour.

Paper, etc: http://www.accuvantlabs.com

We’ve come a long way...

® The browser Is the most critical application we use today
® |n some cases it may be the only application we use
® [Especially true as we move to SaaS / cloud / etc

® Most common entry point for viruses, malware, client-side
exploitation

ACCUVANT '~

No maps for these territories

® Metrics / bakeoffs thus far have been narrowband
® Focused on some single, easy-to-measure test case
® Bar charts are not the end goal of security “research”

® \We took a more holistic view.
® Defined shared attack surface on 3 major browsers
® Specific focus on exploitation/persistence defense
® Qur goal was to create measurable, agnostic criteria

® Public release of all test data and tool chains to foster an open
dialogue

Browser Security Ecosystem

® \We defined the browser security ecosystem as:
® Browser Process Security Architecture
® Add-On Security (Plugins, Extensions)
® [Exploit Mitigation and Sandboxing
® Malware Detection / Blacklisting
® Historical Vulnerability Metrics

® Again, our focus was on commonalities.

Process Security Architecture

® Common across all modern browsers:
® Multi-process / multi-threaded architecture
® Security barriers, trust zones, integrity models

® |ntegrity models in Windows 7:
® System
® High
® Medium
® |ow

IE Process Architecture

® “| oosely Coupled” model
e Ul frame, tabs (low integrity) largely independent

® Medium integrity broker process

® (reates low integrity tabs:
® (eneral Browsing and Rendering
® ActiveX controls and other plugins
® (GPU acceleration
® Tab-independent: downloads, toolbars, etc

Chrome Process Architecture

® Uses a medium integrity broker process
¢ Manages the Ul

® (reates separate low integrity processes for:
® Rendering tabs
® (Qut-of-process hosting for plugins, extensions
® (GPU acceleration
® Named pipes created by broker for IPC

=) & chrome exe 1036 Medium

Firefox Process Architecture

® Single, medium integrity browser process

® (Contains entire browsing session in a single address space
o All tabs
e Alladd-ons
® GPU acceleration
® efc.

® One exception: Flash and Silverlight plugins
® Hosted out-of-process at medium integrity

3912 Firefox Medium
6104 Plugin Containerf... Medium

Why Architecture Matters

® Process architecture determines if an exploit will
® Succeed or fail
® Attain persistence
® Have access to other in-browser data
® Communicate with other processes / plugins

® Along with sandboxing, key criteria for true exploitability

Process Name

chrome.exe
chrome.exe
chrome.exe
iexplore.exe

iexplore.exe

firefox.exe

plug-in-
container.exe

Sandboxing

® Why is sandboxing important?
® There will always be bugs (until Skynet takes over)

® Assume attackers will find a method for exploitation
® | imit what damage can be done

® \We've accepted compromise, hence emphasis on
limitations post-mortem

e Ultimately if a sandbox bypass Is required to land a
payload, attacker complexity is increased

Sandboxing (cont.)

® (General effectiveness of sandboxes

Sandbox Result
Read Files
e ies
Read Registry Keys o o}
e ey o
Network Access
s oo
Thread Access o] @]
e s
Process Creation
G | | [X
System Parameters . .
e | | X | X
Desktop & Windows
Station Access
e | Xe | X | X

Named Pipes Access

*Isolated Desktop and Window Station
J Action was blocked

W) Action was partizlly blocked
x Action was allowed

Sandboxing (cont.)

® (Google Chrome prevents processes in the sandbox from

doing much of anything
® [Fven if permission is granted, it is limited to the alternate

desktop

® Microsoft Internet Explorer allows read access to most

objects on the operating system
® Deters a handful of system modifications

® Mozilla Firefox, on the other hand, is only limited by

standard medium integrity
® Permitting read, write and system change capabilities
associated with regular, non-administrator users

® [f current user can do it, so can FF

JavaScript JIT Hardening

® JIT engines emit native code that can weaken security

® ASLR and DEP already exist for compiled binaries, but are
not effective protections for JIT engines because

¢ JIT compilation bridges the distinction between data and code

® Predictable executable memory can turn a previously un-
exploitable bug into a trivial exploit

e JIT hardening prevents the abuse of the JIT engine itself

JIT Hardening Comparison

Browser Comparison
JIT Hardening Techniques

Codebase Alignment Randomization

Instruction Alignment Randomizaticn

Constant Folding

Constant Blinding

Rescurce Constraints

Memory Page Protection
Additional Randomization

Guard Pages

v
v
v
\/

J Technique was implemented
W, Technigue was not necessary
x Technigue was not implemented

URL Blacklisting Services

® |ntent: Early warning system for fast-flux malware
® |E: MS Phishing filter -> MS URS / SmartScreen Filter
® (oogle SBL, used by Chrome, FF, Safari

® Similar goals, some implementation differences
e SBL: Sourced from crawl data, public submissions
e MS URS: Numerous private feeds, public submissions

® \We tested both services against public malware URL feeds
e B[ADE, MalwareBlacklist, MalwareDomains, MalwarePatrol
® \We wanted to use public, attributable sources

Blacklisting Services (cont.)

® 3086 average unique live URLs per day
® 404 vs 405 matches for SBL vs URS
® |nterestingly, 42 SBL URLs also in URS
® No URS URLs in SBS

Blacklisting Services (cont.)

e Bothonly ID a fraction of our sample set. What gives?
e Apparently, malware SIGINT is really hard
® Sharing info / collaboration could help
e Still, it’ s clear neither of these services is a panacea

Daily Detail: Detected Malware URLs Rolling Average: Detected Malware URLs
499
500 500
a7s a7s
as0 450
425 425) 0 413 w08 rel 06 -
200 oo < <> ~ < -
foe 404 w—tmRolling
Average:
- B M 380 Google S8
350 350 | s 362 —@=folling
349 54 Average
325 325
300 300
278 275
250 250
225 225
200 200
123/ 124/ '/25/: '/26/1 2727/1 128/ 1129/ '/30/1

Vulnerability Statistics

e Difficult if not impossible to make clear comparisons here
® Privately disclosed bugs, rollups, internal discoveries

® Timelines and vagaries, severity metrics
® \We discarded what wasn’t clearly measurable, normalized the

data

Vuln Stats (cont.)

® (One fairly reliable and interesting metric is time to patch
® Again, based only on what we could normalize

Average Time to Patch

214
158
f. .

Firefox Internet Explorer Chrome

Conclusions

® [Fvery browser has improved over the last 4 years
® Diversity and the browser wars have benefited end users

® Most of the yardsticks are broken
® Security models are hard to make charts from

® \\We believe, that the best defended browser is the most
payload-hostile one

Conclusions (cont.)

® |n the long run, no disinfectant like sunlight
e \Without transparency, there’ s no real debate on this topic

® \We shared our tools and data, anyone is welcome to debate
the merit of our work, regardless of funding

® \We're proud of the dialogue and conversation we created
® \We hope we've set a precedent in publishing our test data
® Please expand our research! We might even help!

