blgc’:k hat

LISA 2016

PinDemonium

a DBI-based generic unpacker for Windows executables

Sebastiano Mariani - Lorenzo Fontana - Fabio Gritti - Stefano D'Alessio

Malware Analysis

e Staticanalysis: Analyze the o
malware without executing it

bifdkhat

USsA 2016

Dynamic analysis: Analyze
the malware while it is
executed inside a controlled

environment

bifdkhat

Malware Analysis
e Staticanalysis: Analyze the e Dynamicanalysis: Analyze
malware without executing it the malware while it is
executed inside a controlled
environment
Static Analysis

e Analysis of disassembled code
e Analysis of imported functions
e Analysis of strings

v %

° ° O @
Maybe in a fairy tale... biackhat

What if the malware tries to hinder the analysis process?

Packed Malware

e Compressor encrypt the original code —» Code and strings analysis
impossible

e Obfuscate the imported functions —» Analysis of the imported
functions avoided

® o n ’
Packing Techniques -

We can classify three packing techniques based on the location where the
payload is unpacked:

e¢ Unpack onthe MainImage: The deobfuscated code is written inside a
main Image section

e Unpack onthe Heap: The deobfuscated code is writtenin a
dynamically allocated memory area

e Unpackinside remote process: The deobfuscated code isinjected in
a remote process

® [J [] n s
Overriding the Main Image "=

Packed Program
Memory space

OEP—

Decryption Stub

Main
Image

Encrypted Payload

Steps:

1. Start the execution
of the decryption
stub

® [J [] n s
Overriding the Main Image "=

Main
Image

Packed Program
Memory space

Decryption Stub

Encrypted Payload

Performs the
decryption

Steps:

2. The decryption stub
read data from an
encrypted and
decryptitin place
inside a main
image section

® [J [] n s
Overriding the Main Image "=

Packed Program
Memory space

Steps:

3. Attheendofthe
decryption phase
the stub jumps into
the first instruction

Jumps into the of the decrypted

Decryption Stub

Main decrypted area section
Image

Decrypted Payload

Unpacking on the Heap bif2ichat

Packed Program
Memory space

Steps:

1. Start the execution
of the decryption
stub

Main
Image

OEP—) Decryption Stub

Encrypted Payload

Unpacking on the Heap bif2ichat

Packed Program .
Memory space Ste ps:

2. The decryption stub
read data from an

Decrypted Payload «— en crypt ed main
Decrypt the image seFt1on and
payload on the decryptitona
heap dynamically
allocated memory

OEP—) Decryption Stub

area (heap)

Main
Image

Encrypted Payload

Unpacking on the Heap bif2ichat

Packed Program .
Memory space Ste ps.

3. Attheendofthe
decryption phase
the stub jumps into
the first instruction

Jumps into the of the decrypted
decrypted area section

Decrypted Payload «—

OEP—) Decryption Stub

Main
Image

Encrypted Payload

Process Injection

Packed Program
Memory space

OEP=)

Stub

CreateProcess

Encrypted Payload

>

Other Program
Memory space

Main Image

bifdkhat

USsA 2016

Steps:

1. Createremote
legitimate process in
a suspended state

° ° O @
Process Injection blackhat

Other Program Steps:

Packed Program Memory space

Memory space

2. Unmap the
legitimate code
section of the
process

UnmapView
OfSection .

Process Injection

Packed Program
Memory space

Stub

VirtuallocEx/
WriteProcess
Memory

>

Other Program
Memory space

Decrypted Payload

bifdkhat

USsA 2016

Steps:
3. Allocates and writes
the decrypted
payload in the

remote process
memory space.

Process Injection

Packed Program
Memory space

Stub

OEP —)

SetContext
Thread/

ResumeThread

Other Program
Memory space

Decrypted Payload

Encrypted Payload

>

bifdkhat

USsA 2016

Steps:

4.

Modify the thread
context to execute
code from the newly
allocated are and
resume the thread
execution

o Q. .
Solutions biagknat
Manual approach Automatic approach

e Very time consuming o Fastanalysis

e Scale well on the number of
samples that has to be
analyzed every day

e Toomanysamplestobe
analyzed every day

e Adaptthe approachtodeal

with different techniques e Single approach to deals with

multiple techniques

17

° O @
Whatis a DBI? black hat

Control Flow Graph

Basic Block <« BB1
/A\ —> Trace
BB3 BB2
v /
BB4
BB6

BB7 BB8

° (&) @
Whatis a DBI? biadkhat

Code Cache

BB1

PN

BB3

Trace is copied in the code BB1
cache

BB2

/

v

BB4

BB7

BB6

BB8

>

° (&) @
Whatis a DBI? biadkhat

BB1

PN

BB3 BB2
* /
BB4

BB6
BB7 BB8

Code Cache

BB1

DBI provides the possibility to
add user defined code after
each:

- Instruction

- Basic Block

- Trace

° (&) @
Whatis a DBI? biadkhat

Code Cache
BB1 BB1
BB3 BB2 DBI starts executing the
* / program from the code cache
BB4
BB6

BB7 BB8

Keyidea

H OW Canan Exploit the functionalities of the

DBI to identify the common
behaviour of packers:
unp a Cker be they have to write new code in
memory and eventually execute

generic? ¢

USsA 2016

bifdkhat

Our stairway to heaven

Original

Packed
malware

malware

Our journey

begins

We begin to build
the foundation of
our system

24

Detect WxorX memory regions ===

Concepts: Idea:

e WrxorX law broken: Track each instruction of the

, . . program:

instruction written by the

program itself and then e Write instruction: get the target
executed address of the write and update

the write interval consequently.

e All instructions: check if the EIP

e Write Interval (WI): range of is inside a write interval. If the
continuously written condition is met then the WxorX
addresses law is broken.

Detect WxorX memory regions ===

Current
instr.

0x401004 0x425008 0x425004 Ox425000

Legend:

WRITE WRITE WRITE

0x412000 | 0x402000 | 0x401000

0x413000 0x403000 | 0x402000

- Generic instruction

WRITE

End addr.

Start addr.

Write instruction and its
ranges

PinDemonium

Write set

Steps:

Detect WxorX memory regions ===

Current
instr.

0x401004 0x425008 0x425004 0x425000

Legend:

WRITE WRITE WRITE

0x412000 0x402000 | 0x401000

0x413000 0x403000 | 0x402000

- Generic instruction

WRITE

End addr.

Start addr.

Write instruction and its
ranges

PinDemonium

Write set

Steps:

Detect WxorX memory regions ===

0x401004 0x425008 0x425004
WRITE WRITE

0x412000 0x402000

0x413000 0x403000

Legend:

- Generic instruction

Start addr.

End ;ddr. rang €s

wrrre | \Write instruction and its

Current PinD .
instr. 1 en‘llomum
. 0x425000)
: Write set
WRITE
0x401000 Write interval 1
- 0x401000 - 0x402000
!| 0x402000 |

Steps:

1. The current
instructionisa
write, no WI
present, create the
new WI

Detect WxorX memory regions ===

Steps:
Current . .
instr. PinDemonium
2. Thecurrent
| | instructionisa
0x401004 0x425008 @ 0x425004 . 1

Write set write, ’Fhe ranges of
WRITE || WRITE | the write overlaps an
ox412000 || oxs02000 || | VWriteintervall _ existing WI, update

= : = : 0x401000 - 0x403000

0x413000 || 0x403000 |: X - the matched WI

Legend:

- Generic instruction

write | \/\/rite instruction and its

Start addr.

End ;ddr. rang €s

Detect WxorX memory regions ===

Legend:

0x401004

- Generic instruction

WRITE

End addr.

Start addr.

Write instruction and its
ranges

Current

instr.

. 0x425008

WRITE

0x412000 |

0x413000 |

PinDemonium

l

Write set

Write interval 1
0x401000 - 0x403000

Werite interval 2
0x412000 - 0x413000

Steps:

3. Thecurrent
instructionis a
write, the ranges of
the write don't
overlap any WI,
create a new WI

Detect WxorX memory regions ===

Steps:
C?;;t?t PinDemonium
4., The EIP of the
: : current instruction
0401004 Worite set is inside a W1
Write interval 1 WXOI'X RULE

BROKEN

Werite interval 2
0x412000 - 0x413000

Legend:

- Generic instruction

write | \/\/rite instruction and its

Start addr.

End ;ddr. ranges

Ok the core of
the problem

has been
resolved...

... but we have just
scratch the
surface of the
problem. Let’s
collect the results
obtained so far...

Ky

0 :
Dump the program correctly =

PinDemonium

Instrumented
program memory

Main Module

Written Memory

Steps:

1. The execution of a
written address is
detected

0 :
Dump the program correctly =

PinDemonium

Instrumented
program memory

Main Module

Written Memory

Steps:

2. PinDemonium get

the addresses of the
main module

0 :
Dump the program correctly =

PinDemonium

Instrumented
program memory

Main Module

P = Written Memory

\/

Main Module

Written Memory

Steps:

3. PinDemonium
dumps these
memory range

0 :
Dump the program correctly =

PinDemonium

Instrumented
program memory

Main Module

P = Written Memory

\/

Main Module

Written Memory

Steps:

4. Scyllatoreconstruct
the PE and set the
Original Entry Point

Have we
already Nope...

finished?

Unpacking on the heap

bifdkhat

USsA 2016

What if the original code is written on the heap?

PinDemonium

Instrumented
program memory

Main Module

Written Memory

Steps:

o 4] @
Unpacking on the heap ——
What if the original code is written on the heap?
PinDemonium StepS:

Instrumented
program memory

1. The execution of a
1 written address is
detected

2. PinDemonium get the
= addresses of the main
3 module

Main Module D))
3. PinDemonium dumps

N v these memory range

4 _ 4. Scyllato reconstruct
IP =1 \ritten Memory OEP sl 8L the PE and set the
Original Entry Point

Unpacking on the heap bif2ichat

The OEP doesn’t make sense!

0108 PE32
OA

00

00003A00

00003600

Magic Q000000FE Word
MajorLinkerVersion Q00000FA Byte
MinorLinkerVersion (Q00000FB Byte
SizeOfCode 000000FC Dword
SizeOflnitializedData | 00000100 Dword
AddressOfEntryPoint | 00000108 Dword

Unpacking on the heap bif2ichat

Solution

Add the heap memory range in
which the WxorX rule has been
broken as a new section inside the
dumped PE!

1.

Keep track of write- intervals
located on the heap

Dump the heap-zone where
the WxorX rule is broken

Add it as a new section inside
the PE

Set the OEP inside this new
added section

Unpacking on the heap bif2ichat

The OEP is correct!
Magic 000000F8 Word 0108 PE32
MajorLinkerVersion O00000FA Byte O0A
MinorLinkerVersion 000000FB Byte 0o
SizeOfCode 000000FC Dword 00003A00
SizeOflnitializedData | 00000100 Dword 00003600
SizeOfUninitializedD... | 00000104 Dword 00000000
AddressOfEntryPoint | 00000108 Dword 0001A000 .heap

Unpacking on the heap bif2ichat

However, the dumped heap-zone can contain references to addresses
inside other not dumped memory areas!

-heap:8841A08088 assume es:nothing, ss:nothing, ds: da
-heap:8841a080848

-heap:8841a0048 public start

-heap:8841A08088 start: » DATA XREF: |
-heap:8841A08488 add eax, 1

-heap:8841A883 add e d

-heap:8841A080856 moy eax, ds:2Z2B8808h
-heap:8841A008B mov ax, 22CH8888h

-heap:8841a0818 call eax

L T e R e e e e e e e e e e L R a L L L L L s R

Unpacking on the heap bif2ichat

1. Retrieve all the currently
allocated heap-zones

Solution
2. Dump these heap-zones

Dump all the heap-zones and load
them in IDA in order to allow
static analysis!

3. Create new segments inside
the .idb for each of them

4. Copy the heap-zones content
inside these new segments!

Unpacking on the heap bif2ichat

eap:0041A000 start:
eap:B841A060
eap: 00414063
eap:Ba41n086
eap: 08414008
eap:0041A810

Jeap: 00414812
eap:A041AG14
eap:Bau1a200
eap: 08414200 heap
eap: 06414260

ceqd10: 62600600

ceqB10: 62800000 seqb1d

add pax, 1
add eax, ?

» DATA XREF: HEADER: 0840820470

Moy pax, duord ptr ds:afaaa B ; “AAAR"

nov pax, 2200006
call eax

L :

du B

align 200h

dd 386h dup(?)
ends

ceqf10:02000000 ; Seqment type: Reqular
ceq@10: 62600600 ; Seqment alignment '' can not be ref

seqnent para private

; Segment type: Regular
; Segnent alignment ' can not be represented in assembly

seqB21

segnent para private ' used?

assume cs:seq2d

s0rg 22080080

assume es:nothing, ss:nothing, ds:nothing, fs:nothing, gs:nothing
X0r edy, eds

push eax

OO

Two down,
two still

standing!

Reverser we are
coming for youl!
Let's deobfuscate
some imported
functions...

46

Deobfuscate the IAT bifdichat

Extended Scylla functionalities:

e IAT Search: Used Advanced and Basic IAT search
functionalities provided by Scylla

e IAT Deobfuscation: Extended the plugin system of Scylla for
IAT deobfuscation

One last step...

Too many dumps,
too many programs
making too many

problems... Can't
you see? Thisis the
land of confusion

o '+ W
Recognize the correct dump "=
We have to find a way to identify the correct dump

Idea

Give for each dump a “quality”
index wusing the heuristics
defined in our heuristics
module

1. Entropy difference

o '+ W
Recognize the correct dump "=
We have to find a way to identify the correct dump

Idea

Give for each dump a “quality”
index wusing the heuristics
defined in our heuristics
module

1. Entropy difference

2. Farjump

o '+ W
Recognize the correct dump "=
We have to find a way to identify the correct dump

Idea

Give for each dump a “quality”
index wusing the heuristics
defined in our heuristics
module

1. Entropy difference
2. Farjump

3. Jump outer section

Recognize the correct dump
We have to find a way to identify the correct dump

Idea

Give for each dump a “quality”
index wusing the heuristics
defined in our heuristics
module

2.

4,

Entropy difference
Far jump
Jump outer section

Yararules

bifdkhat

USsA 2016

Yara Rules

bifdkhat

USsA 2016

Yara is executed on the dumped memory and a set of rulesis
checked for two main reasons:

Detecting Evasive code
e Anti-VM

e Anti-Debug

Identifying malware family

e Detect the Original Entry Point

e Identify some malware
behaviours

Advanced Problems

You either diea
hero or youlive

long enough to see
yourself become
the villain

Exploit PIN functioning
to break PIN

A.k.a. Self modifying
trace

55

Self modifyingtrace

_ Code
Cache

ins_1
ins_2
wrong_ins_3
ins_4
1ns_5

Main
| module of
target
program

bifdkhat

USsA 2016

Steps:

Self modifyingtrace

Collected
trace

ins_2

— o - o o -

1NS_1
ins_2
crash_ins_3
ins_4
ins_5

bifdkhat

USsA 2016

Steps:

1. Thetraceis
collected in the
code cache

Self modifyingtrace

Execution
starts

» 1ns_T

ins_2
crash_ins_3
ins_4

ins_1
ins_2
crash_ins_3
ins_4
ins_5

bifdkhat

USsA 2016

Steps:

2. Execute the
analysis routine
before the write

Self modifyingtrace

Execution
starts

» 1ns_T

ins_2
crash_ins_3
ins_4

ins_1
ins_2

ins 3 <
ins_4
ins_5

Patch

bifdkhat

USsA 2016

Steps:

3. The wrong
instruction is
patched in the

main module

Self modifyingtrace

Execute
here

ins_1

ins_2
—» crash_ins_3

ins_4

ins_1
ins_2
ins 3
ins_4
ins_5

bifdkhat

USsA 2016

Steps:

4. Thewrong_ins_3
is executed

CRASH!

Solution

Self modifyingtrace

ins_1(write)
ins_2

crash_ins_3
ins_4

List of written
addresses

ins_1
ins_2
crash_ins_3
ins_4
ins_5

Steps:

bifdkhat

USsA 2016

Self modifyingtrace ibdicnat

Steps:
> CheckEipWritten()
P> MarkWrittenAddress()
R e 1. Insert pne .
1 p CheckEipWritten() ana1y31s routine
ins_2
P> CheckEipWritten() List of written before each
crash_ins_3 addresses instruction and
P CheckEipWritten() .
ins_4 another one if the
instruction is a
. write
ins_1
ins_2
crash_ins_3
ins_4
ins_5

Self modifyingtrace

CheckEipWritten()
[P ——— 1 MarkWrittenAddress()
ins_1 (write)
CheckEipWritten()
ins_2
CheckEipWritten()
crash_ins_3
CheckEipWritten()
ins_4

List of written
addresses

crash_ins_3_addr

ins_1
ins_2
crash_ins_3
ins_4
ins_5

bifdkhat

USsA 2016

Steps:

2. Execute the
analysis routine
before the write

Self modifying trace

IP——

CheckEipWritten()
MarkWrittenAddress()

ins_1 (write)
CheckEipWritten()
ins_2
CheckEipWritten()
crash_ins_3
CheckEipWritten()
ins_4

List of written
addresses

crash_ins_3_addr

ins_1
ins_2

cragh_ins_B <
ins_4
ins_5

bifdkhat

USsA 2016

Steps:

3. Thecrash ins 3is
patched in the
main module

Self modifying trace

IP

_

CheckEipWritten()
MarkWrittenAddress()
ins_1 (write)
CheckEipWritten()
ins_2
CheckEipWritten()

crash_ins_3
CheckEipWritten()
ins_4

ins_1
ins_2
crash_ins_3
ins_4
ins_5

List of written
addresses

bifdkhat

USsA 2016

Steps:

4. Checkif
crash_ins 3
address isinside
the list

YES!

[] [) n @
Self modifyingtrace biackhat
Steps:

CheckEipWritten()
MarkWrittenAddress()
ins_1 (write)
CheckEipWritten()
ins_2
CheckEipWritten() List of written
— b ———csl il o4 - § addresses
CheckEipWritten()
ins_4

5. Stop the execution

crash_ins_3_addr

ins_1
ins_2
crash_ins_3
ins_4
ins_5

Self modifyingtrace

 —

CheckEipWritten()
MarkWrittenAddress()
ins_1 (write)
CheckEipWritten()
ins_2
CheckEipWritten()
ins_3
CheckEipWritten()
ins_4

List of written
addresses

crash_ins_3_addr

ins_1
ins_2
ins_3
ins_4
ins_ 5

bifdkhat

USsA 2016

Steps:

6. Recollect the new
trace

Are there
other ways to
break the Process Injection

WxorX rule?

T ——
[] [] n .
Process Injection e
Inject code into the memory space of a different process
and then execute it

e Dllinjection e Process hollowing

e Reflective Dll injection e Entry point patching

Solution

e
o) n @
Process Injection blackhat
Identify remote writes to other processes by hooking system calls:

e NtWriteVirutalMemory
e NtMapViewOfSection

Identify remote execution of written memory by hooking system
calls:

e NtCreateThreadEx
e NtResumeThread
e NtQueueApcThread

-
Finally for the SWAG!

Ox41a0ec
0x41a0ed
0x41a0ef
0x41a0f3

OEP : 0x41a0f3

° O @
Experiments bisdichat

-> Test 1 : test our tool against the same binary
packed with different known packers.

-> Test 2 : test our tool against a series of packed
malware sample collected from VirusTotal.

Experiment 1: known packers »&«=

v v v v v X v v

MessageBox
WIinRAR v v v v v X v v
MessageBox 7 e v v v v v
WinRAR
v : v v : v v v v

- — Original code dumped but Import directory not reconstructed

° N O @
Experiment 2: wild samples ==

Number of packed (checked manually) samples

T
Unpacked and working 519 49
150 14
Unpacked but not working 139 13

258 24

° N O @
Experiment 2: wild samples ==

Number of packed (checked manually) samples

1066
I T

Unpacked and working 519 49

63%
150 14
258 24

to the overhead

> Performance issues due
introduced by PIN

Packers which
> re-encrypt / compress

Limitations

code after its execution
are not supported

Evasion techniques are
not handled

Generic unpacker based on a
DBI

- Able to reconstruct a working
ConCIuSIOnS > version of the original binary

obfuscation and dumping on

> Able to deal with IAT
the heap

> 17 common packers defeated

Conclusions

63% of random samples
correctly unpacked (known
and custom packers
employed)

The source code is available at

https://github.com/PINdemonium

