
OAuth
App Impersonation Attack

Pili Hu & Prof. Wing Cheong Lau
The Chinese University of Hong Kong

Aug, 2014

HOW TO LEAK A 100-MILLION-NODE SOCIAL GRAPH IN JUST ONE WEEK? -
A REFLECTION ON OAUTH AND API DESIGN IN ONLINE SOCIAL NETWORKS

OAuth App Impersonation
Outline

● Short version
● Long version

○ OAuth Background
○ Previous Attacks Based on Misuse
○ App Impersonation Attack

■ Forged-implicit-grant-flow Attack
■ Forged-bearer-token Attack
■ Executive Summary

○ Case Study
■ Massive leakage of user data
■ Other sample exploits

○ Immediate Fixes & Reflections

Three System Participants
in Online Social Network

● Provider (e.g.)

● User (e.g.)
○ Register user account on Provider
○ Operate various data objects

● App (e.g.)
○ Register developer account on Provider
○ Get data objects access permission from

■ Provider: via application/ approval
■ User: via OAuth

○ AppID, AppSecret

…...

[Short version]

Basic Interaction
among App, User and Provider

Let me post status for you

The proof is called “AccessToken” in OAuth

Let it post status for me

Here’s the proof it can do this
Here’s the proof

Post status “I’m on BH’14”. Here’s the proof

[Short version]

Basic Interaction
among App, User and Provider

Let me post status for you

● The process can be more complex
● Ideally, App needs to prove to provider

that it has AppSecret

Post status “I’m on BH’14”. Here’s the proof

[Short version]

App Impersonation Attack:
Key Idea

Key idea:
● Get/ Use AccessToken without AppSecret
● AccessToken gives the privilege of

“App+User” or “App”

How is this possible?

[Short version]

App Impersonation Attack:
Made Possible by OAuth 2.0

OAuth 2.0 allows User to:
● Get AccessToken without AppSecret:

⇒ “Implicit grant flow”

● Use AccessToken without AppSecret:
⇒ “Bearer token”

How bad is it??

[Short version]

Consequences
of App Impersonation Attack

Cause damage when not all Apps are equal:
● e.g. different access quota
● e.g. different access permissions

If User can impersonate a privileged App

[Short version]

Outline

● Short version
● Long version

○ OAuth Background
○ Previous Attacks Based on Misuse
○ App Impersonation Attack

■ Forged-implicit-grant-flow Attack
■ Forged-bearer-token Attack
■ Executive Summary

○ Case Study
■ Massive leakage of user data
■ Other sample exploits

○ Immediate Fixes & Reflections

OAuth
Standardization & Landscape

● OAuth 1.0:
○ RFC5849, April 2010
○ Obsoleted by OAuth 2.0.
○ Only a few Provider, e.g. Twitter

OAuth
Standardization & Landscape

● OAuth 2.0:
○ Framework specification: RFC6749, Oct 2012
○ Security analysis: RFC6819, Jan 2013
○ Token types:

■ Bearer token: RFC6750
■ MAC token: E. Hammer-Lahav, draft-5 (Jan

2014)
○ Widely supported by Providers with different

implementations

Authorization Code Flow
Illustration

1) Enter the App

Authorization Code Flow
Illustration

2) Redirect to
provider

3.1) User
authentication
(username +
password)

Authorization Code Flow
Illustration

3.2) User
authorization
(review scope
and confirm)

Authorization Code Flow
Illustration

4) Provider returns Code

5) Redirects to App’s
callback URL

OAuth Background
Authorization Code Grant
Client Resource Owner

Authorization
Server

Resource
Server

OAuth Background
Implicit Grant

Implicit
Grant
Flow

OAuth Background
Implicit Grant

Properties of implicit grant flow:
● Access token is returned directly via User
● No AppSecret is used
● Originally introduced to ease developers
● Official usage:

○ Where resource is limited
○ Where App can not keep AppSecret anyway
○ Be avoided whenever authorization code grant is

available

OAuth Background
How to use the Token?

Authorization code grant flow Implicit grant flow

OAuth Background
Token Types

“Request: Parameters + AccessToken” means:
● Bearer token: Put the AccessToken in the

request directly
● MAC token: Put the AccessToken and

Parameters together and sign using
AppSecret

OAuth Background
General Advice to Developers

General advice, now common knowledge for
App developers:
● Use Authorization-code-grant flow if possible
● Use MAC token if possible

Previous Attacks on OAuth

Mainly based on misuse and other weak parts
in Provider/App, e.g.:
● Session fixation: state is not used/checked
● Covert redirect: open redirector

General wisdom: Secure if all the guidelines
are followed by Provider and App

App Impersonation Attack

● Forged implicit grant flow attack
○ ⇒ Obtain AccessToken without AppSecret

● Forged bearer token attack
○ ⇒ Use AccessToken without AppSecret

Without AppSecret ⇒ App Impersonation

Forged Implicit-Grant-Flow
Attack

● Harvest client_id and redirect_uri
from step (1)-(3) in authorization code grant

● Use the same parameters in implicit grant
flow

Authorization code grant flow Implicit grant flow

Forged Bearer Token Attack

● Put access token directly in:
○ HTTP request headers
○ URL parameters
○ POST fields

(RFC6750)
Bearer Token
 A security token with the property that any party in possession of
 the token (a "bearer") can use the token in any way that any other
 party in possession of it can. Using a bearer token does not
 require a bearer to prove possession of cryptographic key material
 (proof-of-possession).

Forged Bearer Token Attack

● Token Type:
○ Most providers do not implement token_type
○ Most providers do not implement MAC token
○ Those who implement do not enforce a type
○ Those who implemented do not provide opt-outs

(RFC6750)

token_type
 REQUIRED. The type of the token issued as described in
 Section 7.1. Value is case insensitive.

http://tools.ietf.org/html/rfc6749#section-7.1
http://tools.ietf.org/html/rfc6749#section-7.1

App Impersonation Attack
Illustration

Go to normal
authorization
page

App Impersonation Attack
Illustration

Change
respose_type
to “token”

App Impersonation Attack
Illustration

Access token obtained!

App Impersonation Attack
Illustration
%cat post-status-fb.sh

#!/bin/bash

access_token="CAAEdrgfH..."

curl -F "access_token=$access_token" \

 -F 'message=Test post from curl' \

 https://graph.facebook.com/me/feed

%./post-status-fb.sh

{"id":"100002175400771_682335645182276"}

Resource
request

Can be done fully in browser if the endpoint uses GET method.
Or with the help of some brower extensions/ developer tools.

App Impersonation Attack
Illustration

App Impersonation Attack
Executive Summary

/authorize?response
type=code&client_id=XXXX&state=XXXX&redirect_uri=XXXX

/authorize?response
type=token&client_id=XXXX&state=XXXX&redirect_uri=XXXX

/api?access_token=XXX&other_parameters

Case Study of Provider X

Big Deal?

Case Study of Provider X

Provider X: A Facebook-like
(not Facebook) OSN with
>100 million users

Case Study of Provider X
Basic Setup and User Perception

Homepage

Friend List Status List

Case Study of Provider X
API Access and Problematic Scopes

Homepage

Friend List Status List

API

“read_status” v.s.
“read_self_status”/ “read_friend_status”/ “read_other_status”

Case Study of Provider X
API Access Permissions

Feedback of the inconsistency:
● Provider X: by design (June, 2013)
● Users: surprised to know; unaware of it

○ Interview with real users
○ Quantitative study on 4400 users

Case Study of Provider X
Rate Control

Apps are differentiated on Provider X:
● Normal App: 200 Queries/hour
● Some higher level App: 900 Queries/hour

⇒ Takes years to collect the data even if it’s
“public”

Case Study of Provider X
Rate Control

We find at least one Privileged App:
> 1 million queries/hour

100 million users / 1 (million/hour) = 100 hours

Cost: < US$ 100
(AWS EC2 m3.2xlarge for 100 hours)

Case Study of Provider X
Estimate Achievable Rate

Model: r = c * w / (w + b)

● r: observed rate
● c: capacity
● w: # of work processes
● b: background rate (from other Apps)

Case Study of Provider X
Estimate Achievable Rate

w1=50,r1=600K (Q/hour)
w2=100,r2=960K (Q/hour)
⇒ c=2.4M, b=150

How to leak 100 million
private user data in one week?

● OAuth App Impersonation
● Privileged App that possesses large quota

○ 1 million quries/hour
● Problematic design of scope

○ “read_status” == “read_everyone’s_status”
● Inconsistent access control misperceived by

users
○ Provider: public data
○ User: private data

Other Sample Exploits

● Send notifications with embedded URLs to
all users of the App

● Acquire access privileges that are otherwise
unavailable for normal App

● App reputation Attack, e.g. “posted via XXX”
● and more ...

Refer to our upcoming paper in ACM COSN’14
for details

Immediate Fixes

● Opt-out/ opt-in for implicit grant flow
● Opt-out/ opt-in for bearer token type
● Review “scope” design
● Review rate control mechanism
● Review privileged Apps

Reflections

● OAuth 2.0 has diverse implementations that
differ from specification

● New attacking surface: App Impersonation
● App Impersonation combined with other

flaws can result in serious exploits
● Protecting App is a MUST when designing

the next generation of the OAuth protocol

Thanks & Q/A

OAuth App Impersonation Attack

Pili Hu
hupili.net

Wing Cheong Lau
www.ie.cuhk.edu.hk/~wclau/

Project Page:
http://mobitec.ie.cuhk.edu.hk/oauth/

