
SecSi Product Development:
Techniques for ensuring Secure Silicon applied to open-source Verilog

projects

Joe FitzPatrick (SecuringHardware.com)
joefitz @ securinghardware . com

Note
This document is a preliminary revision. For the
latest version, please see
http :// securinghardware . com / secure - opencores

Abstract
Secure development processes for software have
formed, developed, and matured in the past decade
to the point where there are well defined categories
of security bugs and proven methods to find them.
Secure hardware development, on the other hand, is
essentially undefined at this point. Most developers
of integrated circuits do no hardware security
validation, or are secretive about their methods and
findings.
Three separate Open-Source CPU designs were
chosen and their verilog source code was reviewed
for common security vulnerabilities. This paper will
first introduce each of these designs and then
identify security vulnerabilities discovered. This
paper will discuss the process that that lead to
discovery, potential means for exploiting the flaw,
and finally methods of fixing it. This paper will
conclude by generalizing these bugs into a checklist
of common hardware vulnerabilities

Introduction
Software stacks continue to grow, enabling new and
different ways of accessing and utilizing the
increasing computing capacity available today. New
software layers are gradually being designed with a
pro-active approach to security while the supporting
layers continue to be refined and secured.
All of this software depends on a solid hardware
foundation. From purely a reliability perspective,
hardware does exactly that and continues to
improve. However, due to a number of factors,
integrated circuit devices do not get nearly the same
scrutiny in terms of security.

Attacking hardware is inherently slower, more
difficult, and more expensive that software. In most
cases the attacker must be physically present with
the need to carefully observe and manipulate
electronics, always with the risk of permanently
destroying the target device. This plays a strong part
of the ‘it’s in hardware so we can trust it’ mindset that
even paranoid software security professionals get
caught in.

Background
There is no doubt that many people are doing
security validation of hardware designs; however,
outside of academia, there is not much public dialog
about methods and practices. Newcomers to the
field have no reference manuals or seminal works,
and no idea of where to start. Established hardware
security validation teams are not benefiting from any
techniques that are not home grown.
Likewise, while formal verification and other methods
promise future solutions to hardware security, the
current state of the industry reflects the state of
software security 15 years ago where a few minutes
of manual inspection can reveal multiple bugs on
what is considered a mature and stable system.
In the interest of starting a conversation about
hardware security validation methods, This paper
will document some of them as applied to actual
real-world, publicly-available Verilog code. Three
different stable ‘Opencores Certified’ projects from
opencores.org were used as examples in lieu of
contrived code blocks or heavily redacted snippets
of proprietary code.

OpenRisc
OpenRISC is a completely open-sourced RISC CPU
architecture developed by the OpenCores
Community. The current implementation is the
OpenRISC 1200 written in Verilog. It is considered
stable, has mainline Linux kernel support, is used

mailto:joefitz@securinghardware.com
http://securinghardware.com/secure-opencores
http://securinghardware.com/secure-opencores
http://securinghardware.com/secure-opencores
http://securinghardware.com/secure-opencores
http://securinghardware.com/secure-opencores
http://securinghardware.com/secure-opencores
http://securinghardware.com/secure-opencores
http://securinghardware.com/secure-opencores
http://securinghardware.com/secure-opencores
mailto:joefitz@securinghardware.com
mailto:joefitz@securinghardware.com
mailto:joefitz@securinghardware.com
mailto:joefitz@securinghardware.com

heavi ly by academia, and has also been
implemented in a number of commercial products.

http :// www . rte . se / blog / blogg - modesty - corex / openrisc -
1200- soft - processor

Openrisc is combined with several other open
components into OpenRISC Reference Platform
System-on-Chip or ORPSoC. We conducted a
security-minded code review of the latest
ORPSoCv2 Ver i log source avai lable f rom
Opencores.org. Since this review was of generic
Ver i log code and not t ied to a spec i f i c
implementat ion, i t ’s d i ff icul t to determine
‘exploitability’ of any noted issues. Despite that, the
issues identified are either likely to be exploitable, or
representative of issues that could be exploitable.

One-Hot and JTAG
A common construct in hardware designs is a State
Machine. The contents of a register define how the
machine behaves, and the machine’s behaviour
combined with the current state will determine the
next state to be loaded.
One-hot encoding is often used for storing the
current state of a machine. This means there is a
single bit for each state, and only one bit is set at a
given time. While this requires extra bits of storage,
it eliminates the need for any decoding logic and
makes it easier to detect invalid states.
ORPSoCv2 implements JTAG as a one-hot state
machine. It defines a single register for each jtag
state:

// Registers

reg test_logic_reset;

reg run_test_idle;

reg select_dr_scan;

reg capture_dr;

reg shift_dr;

reg exit1_dr;

reg pause_dr;

reg exit2_dr;

reg update_dr;

reg select_ir_scan;

reg capture_ir;

reg shift_ir, shift_ir_neg;

reg exit1_ir;

reg pause_ir;

reg exit2_ir;

reg update_ir;

The implementation of this one-hot state machine is
clearly derived directly from the JTAG spec and is in
fact functionally compliant. Each state has an always
@ block which is triggered on tap reset or tclk, and
each of the 16 blocks are structured similarly:

// test_logic_reset state

always @ (posedge tck_pad_i or posedge

trst_pad_i)

begin

 if(trst_pad_i)

 test_logic_reset<= 1'b1;

 else if (tms_reset)

 test_logic_reset<= 1'b1;

 else

 begin

 if(tms_pad_i & (test_logic_reset |

select_ir_scan))

 test_logic_reset<= 1'b1;

 else

 test_logic_reset<= 1'b0;

 end

end

// run_test_idle state

always @ (posedge tck_pad_i or posedge

trst_pad_i)

begin

 if(trst_pad_i)

 run_test_idle<= 1'b0;

 else if (tms_reset)

 run_test_idle<= 1'b0;

 else

 if(~tms_pad_i & (test_logic_reset |

run_test_idle | update_dr | update_ir))

 run_test_idle<= 1'b1;

 else

http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor
http://www.rte.se/blog/blogg-modesty-corex/openrisc-1200-soft-processor

 run_test_idle<= 1'b0;

end

The first assignment sets the state in the event
TRST is asserted. The second sets the state if tap
reset is triggered via TMS. The third and fourth
assignments set the state based on the combination
of previous state and the value of TMS.
Functionally, this is correct. Assuming only one
JTAG state is asserted, only one next state will be
valid. Just like with software, exploitation usually
comes down to undermining assumptions. If we can
find a way to set multiple state registers to ‘1’ at the
same time, we will begin operating this state
machine with two active states since there is
currently no logic to differentiate between one-
hotness or one hot mess.
There is no obvious logical path to set an extra bit in
the state. While a few of the state registers are
visible as outputs, none are settable as inputs:

// TAP states

output shift_dr_o;

output pause_dr_o;

output update_dr_o;

output capture_dr_o;

...

assign shift_dr_o = shift_dr;

assign pause_dr_o = pause_dr;

assign update_dr_o = update_dr;

assign capture_dr_o = capture_dr;

Due to the very similar parallel structure of the state
generating blocks, a timing attack is not initially
obvious, however there is one outlier:

 if(~tms_pad_i & (test_logic_reset |
run_test_idle | update_dr | update_ir))
 run_test_idle<= 1'b1;

There are 4 different paths to the run-test-idle state,
making this assignment dependent on the
combination of 5 separate inputs. Although this
depends heavily on syntesis optimization and FPGA
architecture, If the FPGA’s LUT are only 4-input, it
means that run-test-idle’s assignment will be the
only one with cascading layers of logic. Combined
with the fact that TCK is typically an externally-
controlled pin, It is conceivable to ‘spawn’ an extra
state bit into run-test-idle by manipulating TMS.
The next step is to determine what exactly to do with
this ‘ghost’ state. This particular flaw is difficult to

exploit because of the iterative paths in jtag:

The most obvious way to interfere with JTAG would
bet to traverse both the IR and DR paths at the
same time. By spawning an extra state during
Select-DR-Scan, Exit2-DR, or Exit2-IR, Two
adjacent states could exist that would eventually
traverse down IR and DR paths simultaneously. The
impact would be that TDI data would shift into both
the IR and DR at the same time. Examining the code
indicates that IR takes precedence over DR on TDO.

/

**

*

*

* Multiplexing TDO data

*

*

*

**

************************************/

always @ (shift_ir_neg or exit1_ir or

instruction_tdo or latched_jtag_ir_neg or

idcode_tdo or

 debug_tdi_i or bs_chain_tdi_i or

mbist_tdi_i or

 bypassed_tdo)

begin

 if(shift_ir_neg)

 tdo_pad_o = instruction_tdo;

 else

In the end, there’s no clear juicy exploit hiding here -
yet. JTAG tends to interconnect to nearly everything
in a SOC somehow or another:

● What if DR had precedence over IR on
TDO?

● What other functions of the chip respond to
the current JTAG state?

● Oftentimes, chips enter interesting operating
states between Capture-xR and Update-xR
states.

● What if these operating states collide?

Beyond JTAG-specific considerations, these
observations should apply to all one-hot encodings.
If there is enough reason to implement a state as
one-hot, there should be enough reason to validate
that the state is in fact one-hot, and have a defined
failure-recovery reset state. It is important to
remember, however, that assertions are not helpful
in this regard since they are not synthesized.

As an added bonus, here’s an extra JTAG
bug:

/

**

*

*

* idcode logic

*

*

*

**

************************************/

reg [31:0] idcode_reg;

reg idcode_tdo;

always @ (posedge tck_pad_i)

begin

 if(idcode_select & shift_dr)

 idcode_reg <= {tdi_pad_i,

idcode_reg[31:1]};

 else

 idcode_reg <= `IDCODE_VALUE;

end

always @ (negedge tck_pad_i)

begin

 idcode_tdo <= idcode_reg[0]; // JB 100911

end

It appears to be fine. If we’re in shift_dr, and idcode
is the selected IR, shift TDI through the idcode
register. Otherwise, reset it. However, this breaks the
Pause-DR state’s functionality, which is supposed to
be sort of an idle state that preserves the contents of
DR, while this implementation would obliterate it.

OpenMSP430
openMSP430 is a open-source implementation of
TI’s 16-bit MSP430 architecture, capable of
accurately executing code from any MSP430
toolchain. This represents a much smaller scale
processor with a simpler microarchitecture than
OpenRISC:

OpenMSP430 may be simpler than OpenRISC, but
it still has separate frontend and execution stages.
Again, we examined the Verilog code in the
Opencores.org SVN repository, looking for
potentially exploitable security bugs.

Frontend State Machine Clocking
On first appearance it is clear that openMSP430 has
a very different coding style. The state machine for
the frontend is contained in a single always@ block
as shown:

// States Transitions

always @(i_state or inst_sz or inst_sz_nxt

or pc_sw_wr or exec_done or

 irq_detect or cpuoff or

cpu_halt_cmd or e_state)

 case(i_state)

 I_IDLE : i_state_nxt = (irq_detect &

~cpu_halt_cmd) ? I_IRQ_FETCH :

 (~cpuoff &

~cpu_halt_cmd) ? I_DEC : I_IDLE;

 I_IRQ_FETCH: i_state_nxt = I_IRQ_DONE;

 I_IRQ_DONE : i_state_nxt = I_DEC;

 I_DEC : i_state_nxt = irq_detect

? I_IRQ_FETCH :

 (cpuoff |

cpu_halt_cmd) & exec_done ? I_IDLE :

 cpu_halt_cmd &

(e_state==E_IDLE) ? I_IDLE :

 pc_sw_wr

? I_DEC :

 ~exec_done &

~(e_state==E_IDLE) ? I_DEC :

// Wait in decode state

 (inst_sz_nxt!

=2'b00) ? I_EXT1 : I_DEC;

// until execution is completed

 I_EXT1 : i_state_nxt = pc_sw_wr

? I_DEC :

 (inst_sz!

=2'b01) ? I_EXT2 : I_DEC;

 I_EXT2 : i_state_nxt = I_DEC;

 // pragma coverage off

 default : i_state_nxt = I_IRQ_FETCH;

 // pragma coverage on

 endcase

While the actual encoding is abstracted from this
code block (it is fully encoded, not one-hot), the
existence of the ‘default’ case clearly defines what is
supposed to happen when the state is not valid. If it
were one-hot encoded, this line would immediately
jump to I_IRQ_FETCH state if it ended up on a too
hot two-hot situation.
It is also quickly apparent that this always@ block is
not directly clocked. The sensitivity list contains 9
different signals which we might assume are
synchronously clocked, and this block would be
triggered whenever one or more of the signals
changes. This is significant because if any one
signal can be asynchronously toggled, the entire
state machine will increment forward one step -
perhaps out of sync with the backend and rest of the
architecture.
Following back the cpu_halt_cmd, we find:

// CPU on/off through the debug

interface or cpu_en port

wire cpu_halt_cmd = dbg_halt_cmd |

~cpu_en_s;

This is a pretty common practice. Several signals
might be combined with logic into a more descriptive
wire name. The disadvantage of this is that it can
hide from simple inspection external factors that
might allow control of a signal. For example, if there
were a secure lock/unlock signal that was combined
with a user-controllable input, a coder might not use
the correct signal and accidentally give a user-
controllable signal influence over what should be a
secured resource.
As we continue to step backwards we find:

always @(posedge dbg_clk or posedge dbg_rst)

 if (dbg_rst) halt_flag <= 1'b0;

 else if (halt_flag_clr) halt_flag <= 1'b0;

 else if (halt_flag_set) halt_flag <= 1'b1;

wire dbg_halt_cmd = (halt_flag |

halt_flag_set) & ~inc_step[1];

dbg_halt_cmd depends on halt_flag, which normally
is synchronous to dbg_clk, but the preceding
always@ block is also sensitive to dbg_rst. We have
found an external signal that can be used to trigger
the frontend state machine logic asynchronously.
Looking back at the state machine, we can pick out
the state that might be vulnerable to this, particularly
IRQ_FETCH, IRQ_DONE, and DEC. When timed
carefully, we should be able to skip any one of these
states. This means we could theoretically bypass the
execution of a single instruction since we failed to
fetch it, and we would likely instead execute stale
data, most likely re-executing the previous
instruction.
The takeaway here is to be mindful and deliberate
about state transitions:

● Is your state machine strictly clocked?

● Are your sensitivity list parameters all
synchronous?

● Are your critical signals ‘pure’ or are the
combined logically with other, perhaps
asynchronous or user-controlled signals?

Amber
Amber is an open-source ARMv2 compatible core.
By implementing an older version of the ARM
instruction set, the project avoids patent issues with
later instruction sets, however ARMv2 is not
supported by recent Linux kernels.
Amber sits in between openMSP430 and OpenRISC
in complexity and capacity. While it’s a much more
complicated and more capable architecture than
MSP430, it is architected with all memory access
routed over the Wishbone interface versus a native
memory interfaces in ORPSoC implementations.

Memory, Addressing, and Caching
Our analysis of Amber focused on memory,
addressing, and caching - an area that often seems
simple at first glance, but is filled with nuances,
conditions, exceptions, and corner cases that can be
difficult to hit but have a big impact when they are.
After our analysis, we actually didn’t encounter any
security issues that seemed potentially vulnerable.
As a result, let’s highlight some of the things that
were done right and how they might have gone
wrong.
First, let’s examine the memory map, as defined in
system/memory_configuration.v:

// e.g. 24 for 32MBytes, 26 for 128MBytes

localparam MAIN_MSB = 26;

// e.g. 13 for 4k words

localparam BOOT_MSB = 13;

localparam MAIN_BASE =

32'h0000_0000; /* Main Memory */

localparam BOOT_BASE =

32'h0000_0000; /* Cachable Boot Memory */

localparam AMBER_TM_BASE = 16'h1300;

/* Timers Module */

localparam AMBER_IC_BASE = 16'h1400;

/* Interrupt Controller */

localparam AMBER_UART0_BASE = 16'h1600;

/* UART 0 */

localparam AMBER_UART1_BASE = 16'h1700;

/* UART 1 */

localparam ETHMAC_BASE = 16'h2000;

/* Ethernet MAC */

localparam HIBOOT_BASE =

32'h2800_0000; /* Uncachable Boot Memory */

localparam TEST_BASE = 16'hf000;

/* Test Module */

…

// UART 0 address space

function in_uart0;

 input [31:0] address;

begin

 in_uart0 = address [31:16] ==

AMBER_UART0_BASE;

end

endfunction

Here, we see the wishbone addresses where each
peripheral as well as memory are mapped, followed
by an example of one of the “in_xxx” functions that
returns true when a given address maps to that
target peripheral. There are two common pitfalls that
often happen right here.
First, overlapping memory spaces can introduce a
number of problems. This is remediated by giving
each device a full 64k of address space. As the code
is formatted, it’s plain to see the order in memory
and the high 16 bits of each address range. Also
thanks to the well-formated Verilog, it is quick to
confirm that all of the “in_xxx” functions properly
compare the same high 16 bits against the tested
address.
Second, introducing configurable memory mapping
adds orders of magnitude of complexity right here.
Considering this is a soft core design intended for
customization on an FPGA, there are nuances to
customizing this memory map that are not
immediately apparent. Placing I/O devices as low as
0x13000000 limits the system to just over 128MB of
memory. As memory capacity has increased, most
FPGA development boards come equipped with
more memory. It is not clear from this code that
adjusting MAIN_MSB beyond it’s current value might
be catastrophic.

Do determine if, in fact, there are any memory
aliasing issues, we have to examine the logic that
actually resolves addresses using these functions
and defines. For that we examine
system/wishbone_arbiter.v:

// Arbitrate between slaves

assign current_slave = in_ethmac

(master_adr) ? 4'd0 : // Ethmac

 in_boot_mem

(master_adr) ? 4'd1 : // Boot memory

 in_main_mem

(master_adr) ? 4'd2 : // Main memory

 in_uart0

(master_adr) ? 4'd3 : // UART 0

 in_uart1

(master_adr) ? 4'd4 : // UART 1

 in_test

(master_adr) ? 4'd5 : // Test Module

 in_tm

(master_adr) ? 4'd6 : // Timer Module

 in_ic

(master_adr) ? 4'd7 : // Interrupt

Controller

4'd2 ; // default to main memory

It is immediately clear that address resolution priority
is well defined. In the event there were overlapping
memory regions, the way this assignment is
structured ensures that the same device would get
priority over an address every time. Just as in
software - the fewer different implementations of the
same logic the better.
In the event the memory size were increased to
512MB, main memory would overtake the UARTs,
Test module, Timer module, and interrupt controller.
However, writes to 0x20000000 to 0x2000FFFF
would still be directed to the Ethernet Controller
creating a hole in main memory.
We can also see that any address not otherwise
defined is mapped to main memory. This begs the
question: What would happen if we accessed
address 0x18000000? No I/O device is mapped in
this region, so the access would be directed to main
memory. in system/main_mem.v:

 //

--

 // Write for 32-bit wishbone

 //

--

 always @(posedge i_clk)

 begin

 wr_en <= start_write;

 wr_mask <= ~ i_wb_sel;

 wr_data <= i_wb_dat;

 // Wrap the address

at 32 MB, or full width

 addr_d1 <= i_mem_ctrl ? {5'd0,

i_wb_adr[24:2]} : i_wb_adr[29:2];

 if (wr_en)

 ram [addr_d1[27:2]] <=

masked_wdata;

 end

 …

 //

--

 // Read for 32-bit wishbone

 //

--

 assign rd_data = ram [addr_d1[27:2]];

 …

Note that this is not fully a fair assessment.
main_mem.v is non synthesizable and for simulation
only. However, it is a good indication of what is likely
to be the behaviour of a reals system. High order
bits of the address are ignored - memory simply
wraps around past 128MB. This means that a write
to 0x10000001 is identical to a write to 0x01. In a
more complex system, it also means that a access
to 0x10000001 might be able to circumvent any
checks that would apply to an access to 0x01.
Since this is a very simple core with no MMU, there’s
no paging or memory virtualization to bypass here.
Also, ARMv2’s privilege levels don’t confer any
different access to memory, so there’s no additional
exploit here that wouldn’t have been possible via a
more direct approach.
Despite the fact that no further vulnerability was
discovered, the pathways left open on this system
are indicative of what could be found in more
complicated systems, and could be used to bypass
security measures. When evaluating memory,
addressing, and caching, consider:

● What devices live in the memory map?

● How are they allocated? Ordered?
Prioritized?

● If there are multiple implementations of
address decoding, do they decode overlaps
with the same priority?

● Do memory aliases exist? Can they be used
to bypass protections?

Summary
In the course of reviewing multiple different open-
source Verilog projects, a number of potential
vulnerabilities were identified. The vulnerabilities
highlighted are representative of security related
issues commonly seen in hardware designs. To
recap:

● Different state encoding schemes have
different benefits. If possible, validate
current states, and define the behavior for
when an invalid state occurs. Depending on
design, this could be done with separate
combinational logic or could be as easy as
more carefully defining default cases of case
statements.

● Examine interesting pathways through state
machines. The most direct route makes the
most sense, but if alternate routes exist they
should be validated.

● Every signal in a sensitivity list is granted a
small degree of influence over a block of
logic. Be sure that the correct signals are in
the list, and if possible isolate separate
blocks of logic to separate sensitivity lists
with only the relevant signals.

● Combining signals may help code readability
but also opens the door for unexpected
inputs into a block of logic. Trace critical
signals backwards to make sure their cone
of logic does not include attacker-
controllable signals.

● It is critical to iron out the details of a
system’s memory map. Mirroring,
overlapping, and decode priority can all
cause trouble, especially in systems that
depend on decoding for access control.

Conclusion
Exploitable hardware security bugs do exist in
production systems. There is very little black art

involved in finding these bugs when the source code
is available. Basic hardware security validation is
well within the capabilities of most silicon developers
and validators, so long as they take the time to
understand the importance of a product’s security
requirements.

References
● Fuzzing the RTL:

http :// conference . hitb . org / hitbsecconf 20
10 kul / materials / D 1 T 2%20-%20 Mary
%20 Yeoh %20-%20 Fuzzing %20 the
%20 RTL . pdf

● HSDL: A Security Development
Lifecycle for hardware technologies:
http :// ieeexplore . ieee . org / xpl / abstractAut
hors . jsp ? arnumber =6224330

● A Survey of Frequently Identified
Vulnerabilities in Commercial Computing
Semiconductors:
http :// ieeexplore . ieee . org / xpl / articleDetai
ls . jsp ? arnumber =5955008& navigation =1

● Threat analysis for hardware and
software products using HazOP:
http :// dl . acm . org / citation . cfm ?
id =1569853

● Practical Secure Hardware Design for
Embedded Systems:
http :// www . grandideastudio . com / wp -
content / uploads / secure _ embed _ paper . p
df

● An efficient algorithm for identifying
security relevant logic and vulnerabilities
in RTL designs:
http :// ieeexplore . ieee . org / xpl / login . jsp ?
tp =& arnumber =6581567

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6581567
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://www.grandideastudio.com/wp-content/uploads/secure_embed_paper.pdf
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://dl.acm.org/citation.cfm?id=1569853
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5955008&navigation=1
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6224330
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf
http://conference.hitb.org/hitbsecconf2010kul/materials/D1T2%20-%20Mary%20Yeoh%20-%20Fuzzing%20the%20RTL.pdf

	Note
	Abstract
	Introduction
	Background
	OpenRisc
	One-Hot and JTAG
	As an added bonus, here’s an extra JTAG bug:
	OpenMSP430
	Frontend State Machine Clocking
	Amber
	Memory, Addressing, and Caching
	Summary
	Conclusion
	References

