
Prevalent Characteristics in Modern Malware

Gabriel Negreira Barbosa (@gabrielnb)

Rodrigo Rubira Branco (@BSDaemon)

{gabriel.negreira.barbosa || rodrigo.branco} *noSPAM* intel.com

Disclaimer

2

 We do work for Intel, but we do Security Validation and
hardware security research (yes, we find bugs in the
processor and the platform)

 To be very honest, we don’t do anything, since there are no bugs!

 We are very hard to convince, but we are thankful to all the
great discussions with the Intel Security guys!

 Mistakes, bad jokes are all OUR responsibilities

Disclaimer

3

 We do work for Intel, but we do Security Validation and
hardware security research (yes, we find bugs in the
processor and the platform)

 To be very honest, we don’t do anything, since there are no bugs!

 We are very hard to convince, but we are thankful to all the
great discussions with the Intel Security guys!

 Mistakes, bad jokes are all OUR responsibilities

DON’T TRUST SOMEONE WHO JUST TROWS
DATA ON YOU!!

STATISTICS ARE USUALLY MISLEADING!

SINCE THE DATA LIES, WE WILL TRY TO LIE LESS!

We are from Brazil

4

Respect the sysadmins!

Respect the sysadmins!

Agenda

7

 Introduction / Motivation

 Objectives

 Methodology (New)

 Executive Summary

 Updates from 2012 Protection Mechanisms Research

 Considered Techniques (New)

 Resources / Conclusions

 Acknowledgments

Introduction / Motivation

 Hundreds of thousands of new samples every week

 Still, prevalence data talks about only few thousands or
couple millions samples

 Often, researchers use words such as ‘many’ instead of X
number

 Lots of tricks exposed by researchers without data on how
prevalent they are (and thus if they are worth to be used as
indicator of maliciousness)

 INDUSTRY-RELATED RESEARCH NEED RESULTS,
THUS NOT PROMISING POINTS ARE NOT LOOKED
AFTER

Thanks to our sponsors!!

Before continue, some definitions ...

 Anti-Debugging

 Techniques to compromise debuggers and/or the debugging process

 Anti-Disassembly

 Techniques to compromise disassemblers and/or the disassembling process

 Obfuscation

 Techniques to make the signatures creation more difficult and the
disassembled code harder to be analyzed by a professional

 Anti-VM

 Techniques to detect and/or compromise virtual machines

 Malicious Technique

 A characteristic we look for in the scope of this research. Not necessarily all
software using such technique is malicious

Objectives

 Analyze millions of malware samples

 Share the current results related to:

 Anti-Debugging (updated from 2012 presentation)

 Anti-Disassembly (updated from 2012 presentation)

 Obfuscation (updated from 2012 presentation)

 Anti-VM (updated from 2012 presentation)

 Other techniques that are interesting (or not) (new for 2014)

 Keep sharing more and better results with the community

 More samples analyzed compared to 2012 (12 millions x 4 millions)

 More than 50 new techniques not related to Anti-RE (new for 2014)

 Propose improvements in the malware selection methodology

- Simplify everything

- We coded everything from scratch

- We put together the detection algorithms for better performance (less I/O)

- Output goes to the disk, parse results later

- Some numbers, just for the LOL ;)

- 72 + hours just to parse the results (complications such as function and
section lists) -> We will release raw data on that in the future

- 10 + days running with full capacity to analyze the 12 million samples
(considering that many of them got just ignored – discussed later in the
methodology)

- Not easy to ask more questions to the data, but easy to implement, simple
enough to anyone to implement -> We limited our data because we forgot
some considerations while writing the parsers

Project Decision

Methodology

 Used a total of 80 cores and 192 GB of memory

 Analyzed only 32-bit PE samples from public sources

 Packed samples:

 In the previous research, different samples using the same packer were
counted as 1 unique sample (and analyzed once)

 Analyzed all packers present among the 12 million samples

 Dataset comprises the original 4 million samples (after clearing it with
feedbacks from McAfee – it did not change the previous statistics though)

 Size limitation of samples:

 Removed the previous limitation of not analyzing samples bigger than
3,9 MB for performance reasons (with some exceptions such as the
Flame Malware) – This could have affected the Brazilian malware results
(keep watching)

Methodology - Dataset cleaning

 In 2012 we cleaned the dataset of packers using specific
detections and heuristics (data section size x code section size,
sections existence and entropy levels)

 McAfee researchers gave the idea of looking for similarities in
code sections

 We came up with an algorithm for that to be sure the previous dataset was not
biased (for the new one, we wanted raw numbers, so we did not need it)

 Extract disassembly of each executable section of each malware

 Normalize addresses

 Generate sha1 and search for existence in the database

 Some samples were marked by them as known-good

 Not enough to affect any of the numbers (around 23 thousand)

 We eliminated those samples just in case

Methodology

 Static analysis:

 Main focus of this presentation

 Improves the throughput (with well-written code) – Results possible to be
applied in network in-lined solutions

 Not detectable by malware

 Has lots of limitations

 Dynamic counter-part:

 It is not viable to statically detect everything

 We expect the numbers on the prevalence to grow if dynamic (and more
complete) versions of the detection algorithms are implemented

 We did not cover this in our research

Methodology

 Malware protection techniques in the previous work:

 State-of-the-art papers/journals

 Malware in the wild

 All techniques were implemented even when there were no public examples of
it (github)

 Malware techniques in this work:

 Coverage of techniques not previously analyzed (standalone implementation
instead of using the previous platform)

 Tricks seem during this 2 year period by different malicious samples (we show
the prevalence of the trick in our dataset, we don’t discuss if the existence of it
is enough to define maliciousness)

 Usage of standalone detection mechanisms to avoid previous size limitations

 Triage of familiarities in malware code to avoid bias in favor of specific
malware – around a billion basic blocks to analyze, future results to be
released after the conference and not considered in the presented data

Methodology

 Possible techniques detection results:

 Detected:

 Our algorithm detected the presence of the technique

 Not detected:

 Our algorithm did not detect the presence of the technique

 Evidence detected:

 Our algorithm could not deterministically detect the presence of the technique, but
some evidences were found

 For the statistics, we only grouped the results:

 Detected: We consider the technique is present

 Not detected OR evidence detected: We consider the technique is NOT
present

Methodology

 Analysis rely only on executable sections and in the entry
point

 Decreases the probability to analyze data as code

 Improves the analysis time

 For now we miss non-executable areas, even if they are referred by analyzed
sections (future work?)

 Standalone code:

 Removed the dependency of the previous platform

 Permitted more flexibility in the research (collecting the data separately)

 Avoided re-running the same unneeded code again in the same dataset

Executive Summary

6668630

1434537

Summary - Total: 8,103,167

Total considered Non-PE32

Newly analyzed samples

Packed vs Not Packed (updated)

2012 results 2014 results

62.47%

37.53%

Not packed

Packed

Top Packers (updated)

2012 results

2014 results

62.47%

11.39%

7.81%

6.42%

4.05%

3.36%

2.36%

1.99%

1.47%

1.23%

1.18%

1.17%

 Unknown/None

 [UPXV200V290MarkusOberhumerLaszloMolnarJohnReiser]

 [UPXv20MarkusLaszloReiser]

 [Armadillov171]

 [UPX290LZMAMarkusOberhumerLaszloMolnarJohnReiser]

 [UPX20030XMarkusOberhumerLaszloMolnarJohnReiser]

 [Armadillov1xxv2xx]

 [UPXProtectorv10x2]

 [NETexecutableMicrosoft]

 [PECompactv2xx]

 [ASPackv212AlexeySolodovnikov]

 [ASProtectV2XDLLAlexeySolodovnikov]

Packer - Top 11 + Unknown/None

Protecting Mechanisms of Packers
(updated)

Paper (yes, we wrote one two years ago…)

…

And a new one this year ;)

To be released (pending legal approvals)

Anti-VM (updated)

2012 results 2014 results

79.66%

22.20%

10.64%

1.14%

0.00%

0.00%

IN

SLDT

STR

VPC Invalid Opcode

SIDT

SGDT

Anti-Disassembly (updated)

2012 results 2014 results

14.26%

3.46%

Fake Jump - STC/CLC

Fake Jump - XOR

Anti-Debugging (updated)

2012 results 2014 results

20.76%

11.12%

9.44%

0.64%

0.57%

0.52%

0.19%

0.00%

Anti-Hook

Software Breakpoint

SS register

IsDebuggerPresent PEB
BeingDebugged

Heap Flags

PEB NtGlobalFlag

Hardware Breakpoint

SoftICT Int 1

Obfuscation (updated)

2012 results 2014 results

69.08%

20.87%

1.99%

1.46%

0.00%

Instruction Substitution (Push Ret)

NOP Sequence

PEB->Ldr Address Resolving

Push Pop Math

Stealth Import Win API

Blacklisted functions presence (new)

74.28%

46.16%

45.13%

24.79%

18.96%

18.24%

18.20%

17.98%

17.51%

14.07%

13.03%

Function: GetProcAddress

Function: GetCurrentProcess

Function: WriteFile

Function: OpenProcess

Function: LoadResource

Function: GetModuleFileNameW

Function: GetModuleHandleW

Function: CreateFileW

Function: LockResource

Function: IsDebuggerPresent

Function: DeleteFileW

Top 11 - Functions of Interest

32.73%

20.90%

17.80%

8.12%

6.33%

4.93%

4.26%

1.18%

0.98%

0.95%

 3 sections

 5 sections

 4 sections

 7 sections

 6 sections

 8 sections

 2 sections

 9 sections

 10 sections

 1 sections

Number of Sections - Top 10

Number of sections (new)

61.98%

28.50%

3.66%

3.14%

0.95%

0.61%

0.33%

0.17%

0.14%

0.12%

 1 executable sections

 2 executable sections

 3 executable sections

 0 executable sections

 4 executable sections

 5 executable sections

 6 executable sections

 7 executable sections

 9 executable sections

 8 executable sections

Number of Executable Sections - Top 10

Number of executable sections (new)

Section Names (new)

81.85%

65.69%

61.02%

47.74%

32.50%

15.56%

15.56%

15.47%

8.30%

8.18%

7.91%

7.39%

6.11%

5.17%

3.44%

3.44%

2.62%

.rsrc

.text

.data

.rdata

.reloc

.idata

UPX0

UPX1

CODE

.tls

DATA

BSS

.ndata

.bss

.tsuarch

.tsustub

UPX2

1.83%

0.69%

0.68%

0.16%

0.11%

0.09%

0.09%

0.08%

0.08%

0.07%

<blank>

.data

.text

.rsrc

.rdata

.

.petite

.edata

.idata

.adata

Repeated Section Names (new)

96.33%

3.67%

Empty x Non-Empty IAT

Non-empty IAT Empty IAT

Empty IAT (new)

Entry-point attributes (new)

61.82%

33.89%

4.17%

0.12%

Entrypoint Attributes

 Entrypoint in a section X !W Entrypoint in a section X W Entrypoint in a section !X W Entrypoint in a section !X !W

Entry-point uncommon insns (new)

17.44%

17.20%

8.17%

7.81%

7.32%

6.43%

4.33%

2.89%

2.70%

2.07%

2.06%

 0 uncommon

 6 uncommon

 2 uncommon

 4 uncommon

 1 uncommon

 3 uncommon

 5 uncommon

 9 uncommon

 8 uncommon

 7 uncommon

 12 uncommon

Uncommon Instructions Prevalence - Top 11

Entry-point insns (new)

93.48%

93.13%

92.69%

82.83%

78.34%

76.19%

72.75%

71.21%

71.04%

67.84%

67.37%

64.98%

63.15%

 [ADD]

 [MOV]

 [PUSH]

 [XOR]

 [CMP]

 [SUB]

 [JMP]

 [CALL]

 [INC]

 [JZ]

 [JNZ]

 [LEA]

 [POP]

First 100 Instructions (625 different instructions found) - Top 13

Entry-point sleep() calls (new)

5.39%

94.61%

Sleep in the First 100 Instructions

 Sleep Non-Sleep

PE Header Fields (new)

100.00%

53.26%

27.77%

22.90%

Total considered

Zeroed header checksum

Entry point not in 1st section

Overlapped/Spaced Sections

PE Header Inconsistencies

Signed binaries (new)

77.30%

22.70%

Signed x Unsigned Samples

 Unsigned Signed

Compilers (new)

60.27%

16.69%

12.45%

8.95%

7.85%

6.87%

6.39%

6.37%

5.91%

3.77%

2.41%

2.35%

2.33%

2.21%

 Unknown

 [Microsoft Visual C++ 8]

 [Microsoft Visual C++ v6.0]

 [Microsoft Visual Basic v5.0]

 [VC8 -> Microsoft Corporation]

 [Microsoft Visual Basic v5.0 - v6.0]

 [Microsoft Visual C++]

 [Microsoft Visual C++ 5.0]

 [Borland Delphi 4.0]

 [Borland Delphi v3.0]

 [Microsoft Visual C++ v6.0 DLL]

 [Microsoft Visual C++ v7.0]

 [Microsoft Visual C++ 6.0]

 [Borland Delphi v6.0 - v7.0]

Compiler - Top 13 + Unknown

Sections Entropy (new)

114.24%

74.09%

72.30%

71.76%

60.52%

35.91%

21.04%

16.44%

0.01%

0 - 0.99

7 - 7.99

4 - 4.99

6 - 6.99

5 - 5.99

3 - 3.99

2 - 2.99

1 - 1.99

8

Sections Entropy

Vulnerability Prevention Usage (new)

79.98%

15.16%

2.87%

1.80%

Function: SEH

Function: ASLR

Function: DEP/NX

Function: Stack Cookies

Exploitation Protection

Anti-Debugging Techniques (2012)

 Studied and documented 33 techniques

 Currently scanning samples for 31 techniques

 Detected: Marked in green

 Evidence: Marked in yellow

 Not covered: Marked in black

Anti-Debugging Techniques

 PEB NtGlobalFlag (Section 3.1)

 IsDebuggerPresent (Section 3.2)

 CheckRemoteDebuggerPresent (Section 3.3)

 Heap flags (Section 3.4)

 NtQueryInformationProcess – ProcessDebugPort (Section 3.5)

 Debug Objects – ProcessDebugObjectHandle Class (Section 3.6)

 Debug Objects – ProcessDebugFlags Class [1] (Section 3.7)

 NtQuerySystemInformation – SystemKernelDebuggerInformation (Section 3.8)

 OpenProcess – SeDebugPrivilege (Section 3.9)

 Alternative Desktop (Section 3.10)

Anti-Debugging Techniques

 Self-Debugging (Section 3.11)

 RtlQueryProcessDebugInformation (Section 3.12)

 Hardware Breakpoints (Section 3.13)

 OutputDebugString (Section 3.14)

 BlockInput (Section 3.15)

 Parent Process (Section 3.16)

 Device Names (Section 3.17)

 OllyDbg – OutputDebugString (Section 3.18)

 FindWindow (Section 3.19)

 SuspendThread (Section 3.20)

Anti-Debugging Techniques

 SoftICE – Interrupt 1 (Section 3.21)

 SS register (Section 3.22)

 UnhandledExceptionFilter (Section 3.23)

 Guard Pages (Section 3.24)

 Execution Timing (Section 3.25)

 Software Breakpoint Detection (Section 3.26)

 Thread Hiding (Section 3.27)

 NtSetDebugFilterState (Section 3.28)

 Instruction Counting (Section 3.29)

 Header Entrypoint (Section 3.30)

 Self-Execution (Section 3.31)

 Hook Detection (Section 3.32)

 DbgBreakPoint Overwrite (Section 3.33)

Anti-Disassembly Techniques (2012)

 Studied and documented 9 techniques and variations

 Currently scanning samples for 8 techniques and
variations

 Detected: Marked in green

 Evidence: Marked in yellow

 Not covered: Marked in black

Anti-Disassembly Techniques

 Garbage Bytes (Section 4.2.1)

 Program Control Flow Change (Section 4.2.2)

 Direct approach

 Indirect approach

 Fake Conditional Jumps (Section 4.2.3)

 XOR variation

 STC variation

 CLC variation

 Call Trick (Section 4.2.4)

 Flow Redirection to the Middle of an Instruction (Section 4.2.5)

 Redirection into other instructions

 Redirection into itself

Obfuscation Techniques (2012)

 Studied and documented 14 techniques and variations

 Currently scanning samples for 7 techniques and
variations

 Detected: Marked in green

 Evidence: Marked in yellow

 Not covered: Marked in black

Obfuscation Techniques

 Push Pop Math (Section 4.3.1)

 NOP Sequence (Section 4.3.2)

 Instruction Substitution (Section 4.3.3)

 JMP variation

 MOV variation

 XOR variation

 JMP variation (Push Ret)

 Code Transposition (Section 4.3.4)

 Program control flow forcing variation

 Independent instructions reordering variation

Obfuscation Techniques

 Register Reassignment (Section 4.3.5)

 Code Integration (Section 4.3.6)

 Fake Code Insertion (Section 4.3.7)

 PEB->Ldr Address Resolving (Section 4.3.8)

 Stealth Import of the Windows API (Section 4.3.9)

 Function Call Obfuscation (Section 4.3.10)

Anti-VM Techniques (2012)

 Studied and documented 7 techniques and variations

 Currently scanning samples for 6 techniques and
variations

 Detected: Marked in green

 Evidence: Marked in yellow

 Not covered: Marked in black

Anti-VM Techniques

 CPU Instructions Results Comparison (Section 5.1)

 SIDT approach

 SLDT approach

 SGDT approach

 STR approach

 SMSW approach

 VMWare – IN Instruction (Section 5.2)

 VirtualPC – Invalid Instruction (Section 5.3)

Malicious Techniques - Blacklisted
Functions

 Studied and documented 73 functions

 Currently scanning samples using 73

 We detect the import or the string presence, not necessarily the usage

 Important to emphasize again: We care about precedence, not
maliciousness (most functions WILL be seem in benign software)

SetVDMCurrentDirectories (not documented by Microsoft) (Section Y)

CreateDirectoryW (Section Y)

WriteFile (Section Y)

CreateFileW (Section Y)

GetTempPathW (Section Y)

LockResource (Section Y)

FindFirstFileW (Section Y)

GetCurrentProcess (Section Y)

GetModuleHandleW (Section Y)

Kernel32.dll Functions

OpenProcess (Section Y)

GetModuleFileNameW (Section Y)

GetProcAddress (Section Y)

LoadResource (Section Y)

RemoveDirectoryW (Section Y)

FindNextFileW (Section Y)

DeleteFileW (Section Y)

EnumProcesses (Section Y)

EnumProcessesModules (Section Y)

WinHttpReceiveResponse (Section Y)

WinHttpSendRequest (Section Y)

WinHttpOpenRequest (Section Y)

Kernel32.dll Functions

D3DKMTOpenAdapterFromDeviceName (not documented by Microsoft) (Section Y)

D3DKMTOpenAdapterFromGdiDisplayName (not documented by Microsoft) (Section
Y)

D3DKMTOpenAdapterFromHdc (not documented by Microsoft) (Section Y)

D3DKMTOpenKeyedMutex (not documented by Microsoft) (Section Y)

D3DKMTOpenResource2 (not documented by Microsoft) (Section Y)

D3DKMTOpenResource (not documented by Microsoft) (Section Y)

D3DKMTOpenSynchronizationObject (not documented by Microsoft) (Section Y)

D3DKMTPollDisplayChildren (not documented by Microsoft) (Section Y)

D3DKMTPresent (not documented by Microsoft) (Section Y)

D3DKMTQueryAdapterInfo (not documented by Microsoft) (Section Y)

D3DKMTQueryAllocationResidency (not documented by Microsoft) (Section Y)

Gdi32.dll Functions

D3DKMTQueryResourceInfo (not documented by Microsoft) (Section Y)

D3DKMTQueryStatistics (not documented by Microsoft) (Section Y)

D3DKMTReleaseKeyedMutex (not documented by Microsoft) (Section Y)

D3DKMTReleaseProcessVidPnSourceOwners (not documented by Microsoft)
(Section Y)

D3DKMTRender (not documented by Microsoft) (Section Y)

D3DKMTSetAllocationPriority (not documented by Microsoft) (Section Y)

D3DKMTSetContextSchedulingPriority (not documented by Microsoft) (Section Y)

D3DKMTSetDisplayMode (not documented by Microsoft) (Section Y)

D3DKMTSetDisplayPrivateDriverFormat (not documented by Microsoft) (Section Y)

Gdi32.dll Functions

DhcpDeRegisterParamChange (dhcpcsvc.dll) (Section Y)

K32EnumProcessModules (Section Y)

K32EnumProcess (Section Y)

K32EnumProcesses (Section Y)

K32GetModuleBaseNameA (Section Y)

K32GetModuleFileNameExA (Section Y)

K32GetProcessImageFileNameA (Section Y)

Miscellaneous Functions

DeviceProblemTextA (Section Y)

DeviceProblemWizardA (Section Y)

DeviceCreateHardwarePage (Section Y)

DevicePropertiesA (Section Y)

Atexit (Section Y)

SetDllDirectory (Section Y)

SfcIsFileProtected (sfc.dll) (Section Y)

LockSetForegroundWindow (Section Y)

CICreateCommand (Section Y)

Miscellaneous Functions

FDIDestroy (cabinet.dll) (Section Y)

FDICopy (cabinet.dll) (Section Y)

FDICreate (cabinet.dll) (Section Y)

FindFirstUrlCacheEntryA (Section Y)

FindNextUrlCacheEntryA (Section Y)

Miscellaneous Functions

Malicious Techniques - Miscellaneous

 Studied and documented 21 miscellaneous techniques

 Currently scanning samples using 10 of them:

 Entry Point Instructions (Section Y)

 Entry Point Sleep Function Calls (Section Y)

 Entry Point in the First Section (Section Y)

 Exploitation Protection Mechanisms (Section Y)

 LoadLibrary() usage / Empty Import Data (Section Y)

 Section Entropy (Section Y)

 Section Amount (Section Y)

 Section Names (Section Y)

 Section Properties (W, X) (Section Y)

 PE Header validations (illegal values, non-ascii section names, empty
section names, invalid checksums)

Miscellaneous that we ignored for now

 StringFromGUID2, CoCreateGUID (ole32.dll) together with
CreateMutex

 NtShutdownSystem (and ntshutdown.pdb)

 Missing File Date (in the version information):

 CompanyName matches (weird strings)

 FileDescription matches

 LegalCopyright matches

 OriginalFilename (different then the binary name)

 Find company names such as Microsoft but not signed binaries

 Overlays (PEStudio does a great job at that)

 Smart Installer, 7zSFX, Nullsoft Scriptable Install System (NSIS), AutoIT,
Spoon (Xenode), RAR, EXE, DLL

Miscellaneous that we ignored for now

 Known SID string

 WMI Filters

 Imports

 Empty DOS Stub

 Microsoft image without debug symbols

 Microsoft image but with outdated debug info (not RSDS)

 Find weird strings (bad word lookup) in the app manifest

Advanced Malware?

 On July, 25, 2012 Morgan Marquis-Boire and Bill Marczak
released a paper about the FinFisher Spy Kit. Their paper
mentions many protection techniques used by the code:

 A piece of code for crashing OllyDBG

 DbgBreakPoint Overwrite (Covered in Section 3.33)

 IsDebuggerPresent (Covered in Section 3.2)

 Thread Hiding (Covered in Section 3.27)

 Debug Objects - ProcessDebugObjectHandle Class (Covered in Section 3.6)

- We asked ourselves the question:

- Ok, so the malware tries to define it is been analyzed… so what?

- If most samples simply do not perform anything malicious under analysis, why
not mimic an analyzed system to avoid infections?

- Quite impossible to be scientific answering that:

- Maybe we missed something

- Maybe the malware would do something malicious anyway

- We tried to identify malware exit()ing/sleep()ing the execution few instructions
(100) after the detection happened

- Same block (100 instructions)

- First flow change follow too (100 instructions)

- Not taken (100 instructions)

Bonus – What the malware does?

Bonus – What the malware does?

2.02%

0.64%

0.23%

97.11%

Exit

Sleep

LoadLibrary

Not defined

Resources

 Updated versions of the paper and presentation are going
to be available at:

 http://www.kernelhacking.com/rodrigo/docs/blackhat2014-paper.pdf

 http://www.kernelhacking.com/rodrigo/docs/blackhat2014-presentation.pdf

 Sample code for the different protection mechanisms we
detect is available on github (we updated it after the latest
presentation):

 https://github.com/rrbranco/blackhat2012

Future?

 Generate the same prevalence numbers for known-good
binaries

 Define discrepancies

 Define possibilities for detection

 We can do that, but we don’t have the huge database

 Download from CNET?

 Ideas??

Conclusions

 We analyzed millions of malware samples and showed
results about the prevalence of different characteristics

 Demonstrated that static analysis is a powerful mechanism
and should be explored more

 There are a lot more to do. Hopefully this will demonstrate
that sharing prevalence data is helpful

 We still have a lot to do... and so do you! Help us! Share your ideas, data,
samples

Acknowledgements

 Ronaldo Pinheiro de Lima and Pedro Drimel provided great
contributions to our research in 2012

 McAfee guys – very insightful discussions and ideas on how to
validate a not biased sample base (we actually implemented the code
differential thanks to those discussions)

And ALL of you who wrote papers about those techniques

THE END ! Really !?

Gabriel Negreira Barbosa (@gabrielnb)

Rodrigo Rubira Branco (@BSDaemon)

{gabriel.negreira.barbosa || rodrigo.branco} *noSPAM* intel.com

