
iOS Forensics with Open-Source Tools

Andrey Belenko

AGENDA

• Basics

• iOS Security

• iOS Data Protection

• Hands-On!

FORENSICS 101

Acquisition ➜ Analysis ➜ Reporting

GOALS:
1. Assuming physical access to the device extract
as much information as practical
2. Leave as little traces/artifacts as practical

WHY BOTHER?
iPod iPad iPhone

More than 800M devices (Jun 2014)

IOS FORENSICS 101

• Passcode
• Protects device from unauthorised access
• Cryptographically protects some data

• Keychain
• System-wide storage for passwords and other sensitive data
• Encrypted

• Disk/Files
• Encrypted

IOS FORENSICS 101
• Logical

• Uses external logical interfaces
• iTunes Backup
• “Backdoor” services: file_relay and house_arrest

• Physical
• Extract disk image
• Bruteforce passcode
• Needs code execution on the device

IOS FORENSICS 101

• iCloud Backup
• Downloads backup from the iCloud
• No encryption
• Needs Apple ID and password

• NAND
• “Extension” of physical
• Potentially allows recovery of deleted files

IOS SECURITY

Chain of trust:
• BootROM (programmed at the factory; read-only)
• iBoot (signature checked and loaded by BootROM)
• Kernel (signature checked and loaded by iBoot)
• Applications (verified and run by kernel)
Applications must be signed
• $99/yr for Developer certificate or $399/yr for an Enterprise one
Applications are sandboxed

JAILBREAK

• Circumvents iOS security to run custom
(=unsigned) apps

• Does this by breaking chain of trust

• Can break it at any level from BootROM to kernel

• Can be tethered or untethered

JAILBREAK
Boot-level JB
• Exploits BootROM or iBoot
• Loads custom (patched) kernel
• BootROM exploits cannot be patched!

User-level JB
• Exploits running kernel
• Usually subject to more limitations

• No passcode, no backup password, etc

JAILBREAK
Tethered JB
• Connection to host is required to JB
• Host sends exploits
• JB doesn’t persist across reboots
• May leave very few traces (esp. boot-level tethered JB)

Untethered JB
• Device is modified to JB itself on each boot
• JB persists across reboots
• Leaves permanent traces

IOS SECURITY

iPhone 4 + iOS 4
• Proper passcode protection
• Proper data encryption
• Common name: iOS Data Protection
• Challenge for iOS forensics
iPhone 4S, 5, 5c have minor changes
iOS 5-8 introduce incremental changes to
Data Protection

DATA PROTECTION
• More robust passcode protection

• Passcode participates in data encryption
• Offline bruteforce not possible

• Better disk encryption
• Per-file encryption key

• Better keychain encryption
• Per-item encryption key

• New iTunes backup format
• Slower password recovery

PROTECTION CLASSES
• Content grouped by accessibility requirements

• Available at all times
• Available only when device is unlocked
• Available after device has been unlocked at least once after

boot
• Random master key (class key) for each protection class
• Each class key encrypted with device key and optionally passcode

key
• Class keys for all protection classes are stored in System Keybag

• /var/keybags/systembag.kb
• New keybag is generated on device restore/wipe

KEYBAG PROTECTION

Protected Key
WRAP = 1

Keybag (locked)

Device KeyPasscode Key

Protected Key
WRAP = 2

Protected Key
WRAP = 3

Protected Key
WRAP = 1

Protected Key
WRAP = 3

...

Key

Keybag (unlocked)

Key

Key

Key

Key

...

DECRYPT

UNWRAP

UNWRAP

UNWRAP

DECRYPT

DECRYPT

DECRYPT

if (WRAP & 0x2) if (WRAP & 0x1)

PASSCODE

• Passcode key protects most class keys
• Passcode key is computed from passcode

• Computation depends on device-specific UID
(UID+ on newer hardware) key

• Must be done on device; cannot bruteforce offline
• System keybag contains hint on passcode complexity

PASSCODE

KEYCHAIN
• SQLite3 DB
• iOS 4: only passwords are encrypted (metadata in

clear)
• iOS 5+: passwords and metadata are encrypted
• iOS 4: AES-CBC
• iOS 5+: AES-GCM
• Random key for each item/password
• Item key is encrypted with corresponding class key

DISK ENCRYPTION
• Only Data (User) partition is encrypted
• Not a full-disk encryption but per-file encryption, more like EFS
• File key, encrypted with class key, is stored in

com.apple.system.cprotect extended attribute
• Protection classes:

• NSFileProtectionNone
• NSFileProtectionComplete
• NSFileProtectionCompleteAfterFirstAuthentication (iOS 5+)
• NSFileProtectionCompleteUnlessOpen (iOS 5+)

PAIRING

• Key negotiation/generation
• Device must be unlocked
• Since iOS 7 user must confirm

pairing
• Pairing record gives same

powers as knowing the passcode

IOS SECURITY
iPhone 5s
• 64-bit
• Secure Enclave (SEP)
• Touch ID

• More passcode-protected
devices

• Yet another challenge for
(physical) iOS forensics

iPhone 6, 6 Plus have minor changes

WORKFLOW

A4 or older
device?

Physical via
ramdisk

Protected by
passcode?

Logical

Already
jailbroken?

Pairing record
available?

Unlocked
since reboot?

Can be
jailbroken?

Yes No Yes

Yes

Yes Yes

Jailbreak

SSH, AFC2,
etc

Try getting
into device

via SSH

iCloud Backup
enabled?

iCloud password
known?

Yes

Get backup
from iCloud

Yes

Start

QUESTIONS SO FAR?

HANDS-ON
Let’s Get Hacking!

TOOLS OF THE TRADE
• Physical

• iphone-dataprotection from Sogeti
• Logical

• libimobiledevice
• Environment

• Santoku Linux 0.5 (VM guest)
• OS X (VM host) with VMware Fusion
• Windows and/or VirtualBox may also work

IPHONE-DATAPROTECTION

• https://code.google.com/p/iphone-dataprotection/
• OS X to build ramdisk and modified kernel
• OS X or Windows to boot device
• Doesn’t reliably work from within VM because of

USB

https://code.google.com/p/iphone-dataprotection/

SANTOKU
• We’ll be using Santoku Linux

0.5 as our base
• Based off Lubuntu 14.04

• Not a strict requirement at all –
can use any Linux distribution

• User/pwd for workshop VM:
santoku/santoku

LOGICAL

libimobiledevice
http://www.libimobiledevice.org

https://github.com/libimobiledevice/

http://www.libimobiledevice.org
https://github.com/libimobiledevice/

LIBIMOBILEDEVICE – BUILDING
• https://github.com/libimobiledevice/libplist/archive/1.12.tar.gz

• ./autogen.sh && make && sudo make install
• https://github.com/libimobiledevice/libusbmuxd/archive/1.0.10.tar.gz

• ./autogen.sh && make && sudo make install
• https://github.com/libimobiledevice/libimobiledevice/archive/1.1.7.tar.gz

• ./autogen.sh --enable-dev-tools
• make && sudo make install

• https://github.com/libimobiledevice/usbmuxd/archive/1.1.0.tar.gz
• ./autogen.sh --without-systemd (at least on Santoku 0.5)
• make && sudo make install

https://github.com/libimobiledevice/libplist/archive/1.12.tar.gz
https://github.com/libimobiledevice/libusbmuxd/archive/1.0.10.tar.gz
https://github.com/libimobiledevice/libimobiledevice/archive/1.1.7.tar.gz
https://github.com/libimobiledevice/usbmuxd/archive/1.1.0.tar.gz

LIBIMOBILEDEVICE – BUILDING
ADDITIONAL TOOLS

• https://github.com/libimobiledevice/ideviceinstaller/archive/1.1.0.tar.gz
• ./autogen.sh
• make
• sudo make install

• https://github.com/libimobiledevice/ifuse/archive/1.1.3.tar.gz
• ./autogen.sh
• make
• sudo make install

https://github.com/libimobiledevice/ideviceinstaller/archive/1.1.0.tar.gz
https://github.com/libimobiledevice/ifuse/archive/1.1.3.tar.gz

LIBIMOBILEDEVICE

List connected devices

idevice_id -l

LIBIMOBILEDEVICE

Get device info

ideviceinfo -s
ideviceinfo [-q <domain>] [-x > out.plist]

LIBIMOBILEDEVICE

List installed applications

ideviceinstaller -l
ideviceinstaller -l [-o]

LIBIMOBILEDEVICE

Create full device backup

idevicebackup2 backup --full <location>

LIBIMOBILEDEVICE – HIDDEN
GEM

com.apple.mobile_file_relay client

filerelaytest

FILE RELAY – SOURCES
AppleTV
Baseband
Bluetooth
Caches

CoreLocation
CrashReporter

CLTM
demod

Keyboard
Lockdown

MobileBackup
MobileInstallation
MobileMusicPlayer

Network

Photos
SafeHarbor

SystemConfiguration
Ubiquity

UserDatabases
AppSupport

Voicemail
VPN
WiFi

WirelessAutomation
MapsLogs

NANDDebugInfo
IORegUSBDevice

VARFS
HFSMeta

tmp
MobileAsset
GameKitLogs

Device-O-Matic
MobileDelete
itunesstored

Accounts
AddressBook
FindMyiPhone
DataAccess

DataMigrator
EmbeddedSocial

MobileCal
MobileNotes

FILE RELAY – CPIO.GZ

gunzip <file.cpio.gz>
cpio -imdv <file.cpio>

FILE RELAY – IOS 8

• Guarded in iOS 8
• /Library/Managed Preferences/mobile/

com.apple.mobile_file_relay.plist
• Set “Enabled” = true

HOUSE ARREST

Access application’s sandbox

ifuse --container <bundle.id> <location>

Unmount

fusermount -u <location>

ICLOUD BACKUP

iLoot
https://github.com/hackappcom/iloot

https://github.com/hackappcom/iloot

THANKS!

ABelenko@viaforensics.com

@abelenko

