
• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

General unpacking method for 
Android Packer(NO ROOT)

We can still crack you!



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Android packer is similar to UPX

• There are several commercial android packers
(Ijiami, BangCle, DexGuard, LIAPP, etc)

• They are distinguished two types by main 
packing mechanism

— Dynamic code(*.dex/jar/apk) loading based

— Memory patch based

• There are various papers for features of android 
packers

What is android packer?



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Packing mechanism based on Dynamic code loading

— It can load code in file or on memory dynamically

— Android platform provides following interfaces only for Java 
layer to load .dex file dynamically
• Documented interfaces: DexClassLoader, PathClassLoader, DexFile

• Undocumented interfaces:
— DexFile.java:

» openDexFile(byte[] fileContents)

» openDexFile(String sourceName, String outputName, int flags)

— dalvik_system_DexFile.cpp:

» Dalvik_dalvik_system_DexFile_openDexFile(const u4* args, Jvalue* pResult)

» Dalvik_dalvik_system_DexFile_openDexFile_bytearray

Packing mechanism



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title stylePacking mechanism

DexFile.cpp (Native Layer)

DexFile

native private static openDexFile

(byte[] fileContents)

native private static openDexFile

(String sourceName, String outputName, int flags)

pulibc DexFile

(File file)

public DexFile

(String fileName)

public static DexFile loadDex

(String sourcePathName, String outputPathName, int flags)

dalvik_system_DexFile__openDexFile

(const u4* args, Jvalue* pResult)

dalvik_system_DexFile__openDexFile_bytearray

(const u4* args, Jvalue* pResult)

DexClassLoaderPathClassLoader
<Documented interfaces>
<Undocumented intefaces>



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Dynamic code loading (in file) 

— Many android packer are using this method

Packing mechanism

Protected APK file

Unpacker

&

Loader

Encrypted 

file

classes.dex Protected

DEX

Execution

<Process memory>

classes.dex

Decrypted code

Protected DEX

1) Read a

protected DEX

2) Loading native 

code for unpacking

3) Decryption

4) Drop protected DEX as file

5) Dynamic loading

and delete the file

Decrypted code

Protected DEXUnpack.so

<Dropped file>



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Dynamic code loading (in file) 

— Protected DEX is in unpacking dex file as array

Packing mechanism

<Process memory>

classes.dex

Encrypted data

Decrypted code

Protected DEX

Protected DEX

3) Dynamic loading

and delete the file

Protected APK file

classes.dex

Protected DEX

Encrypted 

data

Unpacker

&

Loader

1) Decryption

2) Drop protected DEX as file

Execution

Decrypted code

Original DEX <Dropped file>



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Dynamic code loading (on memory) 

Packing mechanism

Protected APK file

Unpacker

&

Loader

Encrypted 

file

classes.dex Protected

DEX

Execution

<Process memory>

classes.dex

Decrypted code

Protected DEX

1) Read a protected DEX

2) Decryption

3) Loading

Dex on memory



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Loading a separated DEX file dynamically causes 
ClassLoader problem

— When decrypted dex loaded by different class loader from 
class loader in Application context try to load and call some 
method, ClassNotFound Exception will occurs

Packing mechanism

System

Classloader

User-defined

Classloader

<Unpacker>

Registered in

Application context

User-defined

Classloader

<Unpacked>

system_server

Platform service provider can’t find

the class in Classloader for Unpakcer



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Context is a key for execution of main components in Android 
application (Activity, Service, Receiver, etc)
— Unpacker needs to change a object of ClassLoader in Application context 

to execute unpacked code correctly

Packing mechanism

- LoadedApk:

- ClassLoader

Application context

System

Classloader

User-defined

Classloader

<Unpacker>

User-defined

Classloader

<Unpacked>

system_server

Reference

Change! Activity Manager

Service Manager

…



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Packing mechanism based on Memory patch

— It modifies <application> tag in AndroidManifest.xml to be 
executed firstly

Packing mechanism

<Process memory>

Protected DEX

Encrypted area

Encrypted area

Encrypted area

Encrypted area

unpacking.so

AndroidManifest.xml

<application className:Unpacker>

Unpacker class2) Loading unpacker.so

1) Execution firstly

3) Decryption

4) Call original code Decrypted class



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Dynamic code loading (in file) 

— <How to unpack: Just pick up the dropped file>

How to unpack logically

Protected APK file

Unpacker

&

Loader

Encrypted 

file

classes.dex Protected

DEX

Execution

<Process memory>

classes.dex

Decrypted code

Protected DEX

Decrypted code

Protected DEXUnpack.so

<Dropped file>



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Dynamic code loading (in file) 

— <How to unpack: Just pick up the dropped file>

How to unpack logically

<Process memory>

classes.dex

Encrypted data

Decrypted code

Protected DEX

Protected DEX

3) Dynamic loading

and delete the file

Protected APK file

classes.dex

Protected DEX

Encrypted 

data

Unpacker

&

Loader

1) Decryption

2) Drop protected DEX as file

Execution

Decrypted code

Original DEX <Dropped file>



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Dynamic code loading (on memory) 

— <How to solve: Dump>

How to unpack logically

Protected APK file

Unpacker

&

Loader

Encrypted 

file

classes.dex Protected

DEX

Execution

<Process memory>

classes.dex

Decrypted code

Protected DEX

1) Read a protected DEX

2) Decryption

3) Loading

Dex on memory



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Packing mechanism based on Memory patch

— <How to solve: Dump>

How to unpack logically

<Process memory>

Protected DEX

Encrypted area

Encrypted area

Encrypted area

Encrypted area

unpacking.so

AndroidManifest.xml

<application className:Unpacker>

Unpacker class2) Loading unpacker.so

1) Execution firstly

3) Decryption

4) Call original code Decrypted class



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Anti-debugging (for gdb, ptrace)
• Anti-debugging (for JDWP)
• Emulator/Device detection
• Rooting detection
• Obfuscation
• Native-level behavior
• Self integrity check

Challenges to unpack



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

Now
Let’s unpack 



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Each challenge can be overcome

• Real-world packed android application is being 
applied many challenges multiply

• We can utilize multiple solutions for multiple 
challenges

How to unpack practically



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• We have to satisfy following conditions to 
unpack easily
— Don’t use android emulator

— Don’t require root privilege

— Don’t use debugger

— Don’t use JDWP

— Don’t analyze obfuscated unpacking stub

— Pick up coin and dump

— Make your own process environment

How to unpack: Condition

Use real-device

without root,

your device.. 

Yeah.. just don’t use

Hooking!



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Android platform provides wait-for-debug 
feature to debug android application

• ActivityManager provides a function makes 
android application wait for connection for 
JDWP at starting point using command “wait-
for-debug”

• We need to repackage the protected application 
to use wait-for-debug feature

How to unpack: wait-for-debug



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• When the debuggee is waiting for debugger at 
starting point of Android application, DEX file is 
not loaded on memory

• There is MethodEntryEvent in JDWP
• We can control a threads suspended by jdwp

event 
• We can control the execution of debuggee using 

wait-for-debug feature and MethodEntryEvent
before the DEX file is loaded on memory

How to unpack: Process 
environment to unpack and trace



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• DexGuard is employing dynamic code loading 
technique for execution of unpacked code

• It can identified using logcat easily

Unpacking: DexGuard



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• We can hook various function to pick up coin..
• I use hooking open() in libc.so

Unpacking: DexGuard

<Process memory>

classes.dex

Encrypted data Decrypted dex(1)

Protected DEX

<Dropped file>

<Dropped file>

Decrypted dex(2)

Encrypted data

Decrypted DEX(1)

/data/local/tmp/tmp

Extracted_dex1

Extracted_dex2

Unpacked dex is

obfuscated..



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• Ijiami checks integrity of apk file
• I couldn’t see dex optimization log with logcat

— Then, we can dump memory 
• When do we need to dump?

— We can know it by hooking dlopen, dlsym
• When Ijiami calls specific function, we can dump decrypted 

code!

Unpacking: Ijiami

Decrypted code

My unpacker

Protected DEX

Hooking!

Decryption

OriginalPacked.apk

/data/app/

/data/local/tmp/tmp

Redirection
Encrypted code

Dump!

Repackaged.apk

Unpacked DEX

/data/local/tmp/tmpHooked
function



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• LIAPP check integrity its .apk file too
• LIAPP uses dynamic code loading
• We can extract unpacked dex

Unpacking: LIAPP

Unpacked DEX

My unpacker

Protected DEX

Hooking!

Extraction!

OriginalPacked.apk

/data/app/

/data/local/tmp/tmp

Redirection

Encrypted file

Repackaged.apk

Unpacked DEX

/data/local/tmp/tmp

Decryption

Dropped file

Read!

Hooked
function

<Process memory>



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• PangXie, just unpack manually..

Unpacking: PangXie

Encrypted DEX

XOR



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

DEMO:
BangCle
DexProtector
APKProtect



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• BangCle unpacks encrypted dex file and loads it
• BangCle performs unpacking, anti-analysis and 

integrity checking simultaneously with multiple 
threads

Unpacking: BangCle



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• DexProtector is using dynamic code loading
• DexProtector employs multiple unpacking step
• It performs integrity checking using Signature 

class in PackageInfo

Unpacking: DexProtector



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• APKProtect performs memory patch to unpack
• It checks integrity of odex file mapped on 

memory

Unpacking: APKProtect



• Click to edit Master text styles

— Second level

• Third level
— Fourth level

» Fifth level

Click to edit Master title style

• You don’t need reversing unpacker’s code
— Prediction, Tracing based on hooking..

— Use my powerful tool for analysis of android app

• We can unpack most android packers using 
wait-for-debug feature and injection

• Companies developing android packer need to 
response to wait-for-debug feature

Conclusion


